How to build and use a Flash DLL

本文介绍了如何构建和使用Flash DLL。首先通过创建一个简单的ActionScript项目并包含所需的库文件来构建DLL,然后加载并使用该DLL。文章还提供了一个实际的例子供读者参考。

As flash dll technic is widely used from AS2 time, now AS3 time, we use it widely too, we don’t like RSL since it can’t controlled by pure AS code.
Here a quick introduction for how to build and use a flash dll:

1. Build a Flash DLL
For a library project, such as AsWing, build it’s DLL is very simple: Create a ActionScript Project with only one simplest class:

class AsWingDLL extends Sprite{
//do nothing
}
And add a compiler argument for your flex compiler : -include-libraries path to the AsWing.swc , then build this project, the output swf is a regular flash DLL now.
Note: The AsWingDLL class is the entry class, it is just for make loader’s onComplete/onInit event will be fired, then compiler argument -include-libraries is to force all the classes in AsWing.swc will be compiled into the output swf.

For a ActionScript Project, the output swf is already a DLL, you just should take care to know what classes were compiled into the swf.

Then:

2. Use a Flash DLL
Well, then, how to use a Flash DLL, in essence, Flash DLL is just like a file that contains compiled classes, so generally, we load it first, the classes is available to use when it is load completed.

You can check this example: www.flashdll.org

Note: The convenience is that you can use the classes and with -external compiler argument to build your main project, above example shows that you can use AsWing in that application, but you don’t need to compile AsWing classes into the main swf, you can load AsWingDLL separately first, and then execute your code which used AsWing. It will runs well.

And, if you have more than one FLL, make sure your DLL’s load order, the most based DLL should load first.

For complex use, you can read the document of Loader and LoaderContext and especially the ApplicationDomain .

Tags: DLL

【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)内容概要:本文介绍了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于解决具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车路径跟踪问题,并提供了完整的Matlab代码实现。该方法无需精确系统模型,通过数据驱动方式结合神经网络逼近系统动态,利用迭代学习机制不断提升控制性能,从而实现高精度的路径跟踪控制。文档还列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统等多个领域,展示了该技术在科研仿真中的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事无人车控制、智能算法开发的工程技术人员。; 使用场景及目标:①应用于无人车在重复任务下的高精度路径跟踪控制;②为缺乏精确数学模型的非线性系统提供有效的控制策略设计思路;③作为科研复现与算法验证的学习资源,推动数据驱动控制方法的研究与应用。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注神经网络与ILC的结合机制,并尝试在不同仿真环境中进行参数调优与性能对比,以掌握数据驱动控制的核心思想与工程应用技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值