Math 425 Fall 2024 - HW 12Java

Java Python Math 425 Fall 2024 - HW 12

Due Friday 11/22, 11:59pm, via Gradescope

Please note:

(1). Please include detailed steps. Only providing the result will not get full credits.

(2). Please write at most one problem in each page. If you reach the bottom please start a new page instead of writing two columns in one page. If a problem contains multiple small questions, you may write them in one page.

(3). Please associate pages with problems in Gradescope.

For density functions we omit the statement ”f=0 otherwise” for con-venience.

1. Consider N independent flips of a coin having probability p of landing on heads. Say that a changeover occurs whenever an outcome differs from the one preceding it. For instance, for HHT HT there are Math 425 Fall 2024 - HW 12Java 3 changeovers. Find the expected number of changeovers.

Hint: Express the number of changeovers as the sum of Bernoulli random vari-ables.

2. The joint density function of X and Y is

Find E[X] and E[Y], and show that Cov(X, Y) = 1.

3. Use the same density function as in Problem 2 to find E[X2|Y = y].

4. A fair 6-side die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a ”6” and a ”5”.

(1). Find E[X].

(2). Find E[X|Y = 1].

(3). Find E[X|Y = 5].

5. The joint density function of X and Y is

Find E[Y3|X = x].

6. An urn contains 30 balls: 10 red, 8 blue, 12 yellow. Pick 12 balls randomly. Let X and Y denote the number of red and blue balls that are withdrawn         

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值