ECON3173 – Cross Section and Panel Data Analysis

Java Python ECON3173 – Cross Section and Panel Data Analysis

Individual Project: Guidelines and Questions

This document provides guidelines and questions for the Individual Project of ECON3173, which accounts for 40% of the total marks.

Honoring the precepts of academic integrity and applying its principles are fundamental responsibilities of all students and scholars at UIC. You are advised to read through the ‘UIC Guidelines for Handling Academic Dishonesty’ file on iSpace before you start your assignment. Any form. of plagiarism or cheating can result in various disciplinary and corrective activities. Using generative AI tools is not allowed.

Deadline: by 20/12/2024Submission Method:

a)    Please   submit  your  typing  assignment  report  in  a  single   PDF  file  to  Turnitin ‘Submission Link: Report’via iSpace. The filename of your PDF submissions should have  the  following  format: ECON3173_Project_Student  ID_Name  in  Pinyin   (e.g., ECON3173_Project_190000001_Mi Lin).

b)    Save    your    data     and    .do    file(s)     in    a     zip    file.    Name     your    zip    file     as ECON3173_Project_Student ID_Name in Pinyin. Then, upload your file to‘Submission Link:  Stata  Data  and  Program’via  iSpace.  You  are  expected  to  submit  2  .do  files,

namely ParA.do and PartB.do, respectively, should be able to replicate each part of your submitted work.

c)    Use the ‘ECON3173_Individual  Project_Report Template’ file on the iSpace to input your report. Ensure you provide a question number for each part of your work.

Format Requirements

Cover page:

Please input your name and student ID on the top of the cover page of the report template, which is available on iSpace.

Word limit:

The  required  minimum  word   count  is   1,500  words,  with  a maximum of 2,000 words in total, excluding tables, graphs, and appendices.

Referencing:

Your  report  should  include  appropriate  references  in  APA format to avariety of necessary literature sources and a wide- ranging bibliography of academic aspects of economics.

Font / Size:

Cambria 12 or Times New Roman 12.

Spacing / Sides:

1.0 / Single-sided / Single-line spacing between two paragraphs.

Pagination required:

Yes

Margins:

At 2.50 to both left and right, and ‘justified’ .

Part A: Imitate an existing research (30%)

Traffic crashes are the leading cause of death for Americans between the ages of 5 and 32. Through various  spending  policies,  the  federal  government  has  encouraged  states  to institute mandatory seat belt laws to reduce the number of fatalities and serious injuries. In this exercise, following Einav and Cohen (2003), you will investigate how effectively these laws increase seat belt use and reduce fatalities using the “SeatBelts.dta” dataset posted on iSpace. The data file Seatbelts contains a panel of data from 50 U.S. states plus the   District   of   Columbia    from   1983   through    1997.    The   dataset   is    detailed   in “Seatbelts_Description.pdf”.  It  was  used  in the  Einav  and  Cohen  (2003)  paper,  which serves as the background reading for this exercise.   Both files are available on iSpace as well.

A1.    Using   OLS  to  estimate  the  effect  of  seat   belt  use  on  fatalities  by  regressing fatalityrate on sb_useagespeed65speed70ba08drinkage21, ln(income), and age. Does the estimated result suggest that increased seat belt use reduces fatalities? Report, interpret, and comment on your results. (5%)

A2.    Run  a  one-way  fixed  effect model with state-fixed  effects.  Do the results  change when you add state-fixed effects? Run a two-way fixed effects model with both time and state-fixed effects. Do the results change when you add time-fixed effects plus state-fixed effects? Report, interpret, and comment on your results. (5%)

A3.    Which  regression  specification  you  obtained  from  A1  and  A2  is  most  reliable? Explain why. (5%)

A4.    Using the results from the two-way fixed effects model with both time and state- fixed effects, discuss the magnitude of the coefficient on sb_useage. Is it large? Small? How  many  lives  would  be  saved  if  seat  belt  use  increased  from  52%  to  90%? Illustrate your calculation and comment on your result. (5%)

A5.    There  are  two  ways  that  mandatory  seat  belt  laws  are   enforced:  “Primary” enforcement means that a police officer can stop a car and ticket the driver if the  officer  observes  an  occupant  not  wearing  a  seat  belt;  “secondary”  enforcement  means that a police officer can write a ticket if an occupant is not wearing a seat belt,  but must have another reason to stop the car. In the data set, primary is a binary  variable for primary enforcement, and secondary is a binary variable for secondary  enforcement. Run a regression of sb_useage on primarysecondaryspeed65speed70,  ba08drinkage21, ln(income), and age, including fixed state and time effects in the  regression.  Does  primary  enforcement  lead  to  more  seat  belt  use?  What  about  secondary enforcement? Report, interpret, and comment on your results. (5%)

A6.    In 2000, New Jersey changed from secondary enforcement to primary enforcement. Assume that data availability is not an issue, design a Differences-in-Differences estimation strategy to estimate the number of lives potentially saved per year by making this change. Explain your approach. (5%)

Part B: A small-scale research project – innovation (70%) Introduction:

In this project, you are invited to empirically investigate potential causality between firms’ business  environment  and  economic  performance  using  a  firm-level  dataset  from  economies  included  in  the  World  Bank  Enterprise  Survey  Data  (WBESD).  WBESD  database collects information about an economy’s business environment, how individual  firms  experience  it,  how  it  changes  over  time,  and  the  various  constraints  to  firm  performance and growth, etc. The entire database is available to researchers and includes  all questions from the surveys at the firm level.

Guidelines to download and prepare data for this individual project:

a)   Please visit https://login.enterprisesurveys.org/ to register your user account for the WBESD database (see the snapshot below). Registration is free.

 

b)  There are a total of 97 economies represented in the World Bank Enterprise Surveys Database (WBESD). Among these, 61 economies have a time span of at least three years. For their individual projects, students are required to select data from a panel of random combinations of three different economies out of these 61 economies.

Data allocation protocol: Students are required to pick a lottery ticker number first. An “Individual Project Lottery Ticket Sign-up Sheet” will be available in iSpace from 9 p.m. on Tuesday, 26/11/2024. Please sign up for a lottery ticket number by 12 noon on Wednesday, 27/11/2024. We will operate on a 'first-come, first-served' basis.

A lucky draw will be conducted in class on Thursday, 28/11/2024, to assign specific economies to each lottery ticket number.

c)   Once registration is completed, login and download the data following the steps below:

i.     Login with yourusername and password. You will be directed to the ‘Full Survey Data’ page.

ii.     Select ‘Panel data’ under ‘Survey Type’ on the left. Ensure you are on the ‘Data by Economy’ view instead of ‘Combined Data’ . See the snapshot below.

iii.     Download  your  economies’  corresponding  data and documentation for all the available years.

For example, Afghanistan has two panel data files, one&nb ECON3173 – Cross Section and Panel Data Analysis sp;for 2005 and 2009 and the other for 2008, 2010, and 2014. Then download both of them.

iv.     Extract the data and survey documentation files into a working folder on your PC. Now the data file is ready to open in Stata.

 

Answer ALL of the Following Questions

Note that this is not an essay-type assignment. Please answer the questions one by one. For each question, the performance of the Stata do files accounts for 20% of the marks.

B1)   Use the Stata command “append” to append data of all years and economies into a single Stata data file with panel data format. Select and rename variables in Table 1. ‘Old name’ refers to the variable name in the original dataset, while ‘New name’ is the new  corresponding name to be  defined.  Generate  a  new  variable  exp_dum (export  dummy)  equals  1  if sales_exp  is  positive;  otherwise,  0.  Generate  a  new variable foreign_dum  (foreign  ownership  dummy)  equals  1 if foreign is positive; otherwise, 0. Generate a new variable soe_dum (state ownership dummy) equals 1 if soe is positive; otherwise, 0. (5%)

Table 1: Variable List

Survey Questions

Old name

New name

GENERAL INFORMATION

 

 

Year the survey was conducted

year

year

Panel ID (the same ID for each firm across different years)

panelid

panelid

What percentage of this firm is owned by the Government/State %

b2c

soe

What   percentage    of   this   firm    is   owned    by   Private    foreign individuals, companies, or organizations %

b2b

foreign

SALES

 

 

During  the  past  fiscal  year,  what  was  this  establishment’s  total annual sales?

d2

sales

During the past fiscal year, what percentage of this establishment’s sales were: Direct exports %

d3c

sales_exp

LABOUR and CAPITAL

 

 

Total number  of permanent, full-time workers at the  end  of last fiscal year

l1

employees

During the past fiscal year, what was the net book value, i.e., the value  of  assets  after  depreciation,   of  the  following:   Machinery, vehicles, and equipment

n6a

capital

Cost of raw materials and intermediate goods used in production in the last fiscal year

n2e

materials

BUSINESS-GOVERNMENT RELATIONS

 

 

In atypical week over the last 12 months, what percentage of total senior  management’s  time was  spent  dealing  with  requirements imposed by government regulations? %

j2

reg_time

Over   the   last    12   months,   has   this    establishment   secured    a government  contract  or attempted to  secure a  contract with the government? Yes/No

j6a

gov_contract

B2)   Conduct exploratory data analysis for variables listed in B1), i.e., using appropriate summary statistics (e.g., observation number, mean, standard deviation, minimum and maximum values, etc.) to explain your data and make necessary comments.

(10%)

Considering total  output is  measured by Sales, labour input is measured by the total number  of  employees,   capital  is  measured  by  capital,  and  intermediate  inputs  are measured by materials, a production function can be written as:

sales = Acapitalα Employeesβ Materialsy                                                             (1)

where A is the total factor productivity (TFP). Based on panel data, taking logarithms on both sides, equation (1) is transformed to

ln(salesit ) = ln(A) + α ln(capitalit ) + β ln(Labourit ) + y ln(Materialsit ) + eit           (2)

B3)   Based  on the variable ‘panelid’,  set the dataset in a panel format, then obtain the estimated coefficients in equation (2) by running panel data regression. Comment on  your  results,  including  a)  a  discussion  on  the  capital,  labour,  and  materials elasticities of sales, respectively, and b) a comparison between the panel two-way fixed effect and random effect model. (10%)

B4)   Include  Export_dumit    as a new variable of interest in equation (2) to test if a firm’s   performance improves after entering export markets. Based on relevant economic   theories or literature, explore the data set to add appropriate control variables to   the production equation (2). Run a panel regression and interpret the results. (10%)

B5)   To what extent could we use the estimated coefficient on  Export_dumit    obtained in B4) for causal inference? Explain. Illustrate an appropriate empirical strategy to make improvements if deemed required. Finally, reestimate the model based on your proposed empirical strategy, compare the results to what you have obtained in B4, and comment on the results. (10%)

B6)   Explore the complete data set (i.e., do not have to be limited to the variables listed  in B1) and design an empirical model to evaluate the impact of ownership structure  on the export decision. Interpret and comment on the empirical results you obtained.

(10%)

B7)   Predict  firm-level  productivity  (i.e.,  ln(A) + eit ) to test the  hypothesis that good business-government relations boost productivity. Explore the complete data set (i.e., do not have to be limited to the variables listed in B1) to propose an empirical model with an appropriate empirical strategy based on relevant economic theories or  literature.  Explain  the  variable(s)  you  select  for  this  question.  Interpret  and comment on the empirical results you obtained         

本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用展开研究,提出了一种改进的智能优化算法以解决微电网系统中经济性、环保性和能源效率等多重目标之间的权衡问题。通过引入非支配排序机制,NSDBO能够有效处理多目标优化中的帕累托前沿搜索,提升解的多样性和收敛性,并结合Matlab代码实现仿真验证,展示了该算法在微电网调度中的优越性能和实际可行性。研究涵盖了微电网典型结构建模、目标函数构建及约束条件处理,实现了对风、光、储能及传统机组的协同优化调度。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能优化算法应用的工程技术人员;熟悉优化算法与能源系统调度的高年级本科生亦可参考。; 使用场景及目标:①应用于微电网多目标优化调度问题的研究与仿真,如成本最小化、碳排放最低与供电可靠性最高之间的平衡;②为新型智能优化算法(如蜣螂优化算法及其改进版本)的设计与验证提供实践案例,推动其在能源系统中的推广应用;③服务于学术论文复现、课题研究或毕业设计中的算法对比与性能测试。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注NSDBO算法的核心实现步骤与微电网模型的构建逻辑,同时可对比其他多目标算法(如NSGA-II、MOPSO)以深入理解其优势与局限,进一步开展算法改进或应用场景拓展。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值