数据哪存比较好?AI把用户“逼上”公有云

随着AI技术的发展,越来越多的企业开始将AI应用部署在公有云上,利用其强大的算力和海量数据处理能力。特别是在物流行业,通过云计算、大数据和AI技术的融合,实现了智慧物流平台的建设,极大提升了物流效率。同时,公有云也为开发者提供了丰富的资源和平台,成为推动AI技术发展的重要力量。
部署运行你感兴趣的模型镜像

越来越多的AI应用发生在云端,尤其是对于智能技术需求高的行业而言,他们甚至可以说是被AI逼上公有云,而那些原本使用私有云的企业用户,也由私有云跃迁到了公有云

数据和算力是维持AI的两大要素,而传统的计算环境是难以满足二者的指数级增长的。

如果在云端借助Hadoop集群和Spark这样的通用计算引擎,或者是Storm等计算框架,就可以将数据分解为多个部分,对每一部分的数据进行分析,之后将效果汇总经过多轮计算筛选出结果。这一切,在数据中心的强大算力下才能完成。

数据哪存比较好?AI把用户“逼上”公有云

当人工智能走向云端,开发者既是第一批受益者,又成为了云服务商手中的核心资源。就像微软不惜重金收购GitHub、谷歌开源TensorFlow一样,核心的开发者群体或社区贡献着数以万计的应用资源,而背后的这些数据资源如果悉数运行在Azure或谷歌云平台上,对于微软和谷歌的云业务发展势必是不错的助力。

落地到行业,对云上智能先知先觉的传统企业深有感触。以物流为例,物流企业比拼的已不止是车队数量和仓储空间,而是学会借助大数据、物联网和AI技术,深入到每一个环节打造智慧的物流平台。这一过程中,云计算扮演着至关重要的角色。过去,写一套完整的物流系统需要调动研发、运维、安全、网络等多个部门的人。如今一个显著的现象是,管理数千辆车规模车队的运营负责人已经可以是学算法专业的年轻人。为什么会有这种变化?原因是这些人会利用算法处理大数据,通过优化运输环节从而提升物流运转的效率。

当然,并不是任何一家传统企业都会先尝试公有云,但他们也会为获得全栈的AI能力去尝试部分上云。工业互联网时代产生的数据量比传统信息化要多数千倍甚至数万倍,并且是实时采集、高频度、高密度的,动态数据模型随时可变,甚至良品率的细微变化都会带来数据模型重建。这样一来,如果做不到工业数据实时更新,智能制造就无从谈起。

数据哪存比较好?AI把用户“逼上”公有云

版权声明:本文素材来源于企业网D1net,转载此文出于传递更多信息之目的,如有侵权,请联系小编删除。

您可能感兴趣的与本文相关的镜像

ComfyUI

ComfyUI

AI应用
ComfyUI

ComfyUI是一款易于上手的工作流设计工具,具有以下特点:基于工作流节点设计,可视化工作流搭建,快速切换工作流,对显存占用小,速度快,支持多种插件,如ADetailer、Controlnet和AnimateDIFF等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值