多线程的应用案例

目录

线程池的返回值ExecutorService简介

四种常见的线程池详

自定义线程池ThreadPoolExecutor和缓冲队列BlockingQueue

缓冲队列BlockingQueue简介:

自定义线程池(ThreadPoolExecutor和BlockingQueue连用)

模拟线程池应用场景

例1 :  简单使用

例2: 多线程的真实场景应用


线程池的返回值ExecutorService简介

ExecutorService是Java提供的用于管理线程池的类。该类的两个作用:控制线程数量和重用线程

四种常见的线程池详

Executors.newCachedThreadPool:创建一个可缓存线程池,如果线程池长度超过处理需要,可灵活回收空闲线程,若无可回收,则新建线程。
Executors.newFixedThreadPool:创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。特点是他的核心线程数和最大线程数是一样的,你可以把它看作成是一个固定线程数的线程池,因为他不会去将超出线程数的线程缓存到队列中,如果超出线程数了,就会按线程拒绝策略来执行。
Executors.newScheduledThreadPool:创建一个周期性线程池,支持定时及周期性任务执行。
Executors.newSingleThreadExecutor:创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行

public class ThreadDemo {
    public static void main(String[] args){
        //创建一个可重用固定个数的线程池
        ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3);
        for (int i = 0; i < 3; i++) {
            fixedThreadPool.execute(new Runnable() {
                @Override
                public void run() {
                    try {
                        //打印正在执行的缓存线程信息
                        System.out.println(Thread.currentThread().getName()+"正在被执行");
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }
         executor.shutdown();
    }


public static void main(String[] args) {
        ScheduledExecutorService service  =  Executors.newScheduledThreadPool(10);

        Runnable task03 = new Runnable() {
            @Override
            public void run() {
                String time = LocalDateTime.now().format(DateTimeFormatter.ofPattern("HH:mm:ss"));
                System.out.println(time+":scheduleWithFixedDelay 开始执行");
                try {
                    TimeUnit.SECONDS.sleep(2);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                time = LocalDateTime.now().format(DateTimeFormatter.ofPattern("HH:mm:ss"));
                System.out.println(time+":scheduleWithFixedDelay 执行完成了");

            }
        };

        String time = LocalDateTime.now().format(DateTimeFormatter.ofPattern("HH:mm:ss"));

        System.out.println(time+":开始执行");

        service.scheduleWithFixedDelay(task03,  10,  10,  TimeUnit.SECONDS);

    }


}

自定义线程池ThreadPoolExecutor和缓冲队列BlockingQueue

缓冲队列BlockingQueue简介:

BlockingQueue是双缓冲队列。BlockingQueue内部使用两条队列,允许两个线程同时向队列一个存储,一个取出操作。在保证并发安全的同时,提高了队列的存取效率。
常用的几种BlockingQueue:
ArrayBlockingQueue(int i):规定大小的BlockingQueue,其构造必须指定大小。其所含的对象是FIFO顺序排序的。
LinkedBlockingQueue()或者(int i):大小不固定的BlockingQueue,若其构造时指定大小,生成的BlockingQueue有大小限制,不指定大小,其大小有Integer.MAX_VALUE来决定。其所含的对象是FIFO顺序排序的。
PriorityBlockingQueue()或者(int i):类似于LinkedBlockingQueue,但是其所含对象的排序不是FIFO,而是依据对象的自然顺序或者构造函数的Comparator决定。
SynchronizedQueue():特殊的BlockingQueue,对其的操作必须是放和取交替完成。

自定义线程池(ThreadPoolExecutor和BlockingQueue连用)

自定义线程池,可以用ThreadPoolExecutor类创建,它有多个构造方法来创建线程池。
常见的构造函数:ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue)

参数介绍: 

 名称     类型  含义
corePoolSize int  

 核心线程池大小

如果将 allowCoreThreadTimeout 设置为 true 时,核心线程也会被超时回收;

threadPoolExecutor.allowCoreThreadTimeOut(true);

maximumPoolSize     int

最大线程池大小

当活跃线程数达到该数值后,后续的新任务将会阻塞。如果线程数超过了核心线程数,那么会创建新的线程,最多就只能创建这么多;

keepAliveTime       long

线程最大空闲时间

如果超过该时长,非核心线程就会被回收。如果将 allowCoreThreadTimeout 设置为 true 时,核心线程也会超时回收。

unit    TimeUnit    

时间单位

TimeUnit.MILLISECONDS(毫秒)TimeUnit.SECONDS(秒)

TimeUnit.MINUTES(分)。

workQueue    BlockingQueue<Runnable>

线程等待队列

通过线程池的 execute() 方法提交的 Runnable 对象将存储在该参数中。其采用阻塞队列实现。

new ArrayBlockingQueue<Runnable>(20);
new LinkedBlockingDeque<Runnable>();
new PriorityBlockingQueue<>();
 new SynchronousQueue<>();
new LinkedBlockingDeque<>();
new LinkedBlockingQueue<>();
new DelayQueue<Delayed对象>();

threadFactory    ThreadFactory    

线程创建工厂

用于指定为线程池创建新线程的方式

handler    RejectedExecutionHandler    

 拒绝策略

当达到最大线程数时需要执行的饱和策略。默认丢弃任务并抛出 RejectedExecutionException 异常。

模拟线程池应用场景

例1 :  简单使用

public class TempThread implements Runnable{
    @Override
    public void run() {
        // 打印正在执行的缓存线程信息
        System.out.println(Thread.currentThread().getName() + "正在被执行");
        try {
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class TestThreadPoolExecutor {
    public static void main(String[] args) {
        // 创建数组型缓冲等待队列
        BlockingQueue<Runnable> bq = new ArrayBlockingQueue<Runnable>(10);
        // ThreadPoolExecutor:创建自定义线程池,池中保存的线程数为2,允许最大的线程数为4
        ThreadPoolExecutor te = new ThreadPoolExecutor(2, 4, 50, TimeUnit.MILLISECONDS, bq);

        // 模拟创建2个任务
         for (int i = 0; i < 2; i++) {
            te.execute(new TempThread())
        }

        // 关闭自定义线程池
        te .shutdown();
    }
}

例2: 多线程的真实场景应用

import com.baomidou.mybatisplus.core.conditions.query.LambdaQueryWrapper;
import com.baomidou.mybatisplus.extension.plugins.pagination.Page;
import com.example.local_project.dto.ThreadRange;
import com.example.local_project.entity.TMonkeykingDevice;
import com.example.local_project.service.ITMonkeykingAreaService;
import com.example.local_project.service.TMonkeykingDeviceService;
import com.example.local_project.utils.ExecutorServiceUtil;
import lombok.extern.slf4j.Slf4j;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import java.util.List;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * 〈多线程〉
 *
 * @author 郭兵
 * @create 2022/8/2
 */

@SpringBootTest
@Slf4j
public class ExecutorThread {
      /**
       * 并行启动N个线程执行
       */
      private final int THREAD_NUM = 5;


      /**
       * 每次处理数据条数
       */
      private final int PAGE_SIZE = 50;

      /**
       * id最大值
       */
      private final long LONG_MAX = 9223372036854775807L;

      @Autowired
      TMonkeykingDeviceService tMonkeykingDeviceService;
      @Autowired
      ITMonkeykingAreaService monkeykingAreaService;
    
      //推荐
      @Test
      //方式一 线程池工具类
      public void test1(){
            ExecutorServiceUtil.setCorePoolSize(THREAD_NUM * 3);
            //获取线程的启止区间
            ThreadRange[] threadRangeArray = getThreadRange();
            for (int i = 0; i < THREAD_NUM; i++) {
                  final int threadIndex = i;
                  ExecutorServiceUtil.execute(() ->
                          dealData(threadRangeArray[threadIndex].getStart(), threadRangeArray[threadIndex].getEnd()));
            }
      }

      // 不推荐使用此方法,容易出现oom异常
      @Test
      public void test2(){
            //创建一个线程
            ExecutorService executorService = Executors.newFixedThreadPool(THREAD_NUM * 3);
            //获取线程的启止区间
            ThreadRange[] threadRangeArray = getThreadRange();

            for (int i = 0; i < THREAD_NUM; i++) {
                  final int threadIndex = i;
            //执行线程
                  executorService.execute(() ->
                          dealData(threadRangeArray[threadIndex].getStart(), threadRangeArray[threadIndex].getEnd()));
            }
      }

      //通过程序计数器 保证线程全部执行成功
      @Test
      public void test3() throws InterruptedException {
//            ExecutorService executorService = Executors.newFixedThreadPool(THREAD_NUM * 3);
            ExecutorService executorService = ExecutorServiceUtil.getThreadPool();
            //2个线程
            ExecutorServiceUtil.setCorePoolSize(THREAD_NUM * 3);
            //获取线程的启止区间
            ThreadRange[] threadRangeArray = getThreadRange();
            //程序计数器
            CountDownLatch countDownLatch = new CountDownLatch(THREAD_NUM);
            for (int i = 0; i < THREAD_NUM; i++) {
                  final int threadIndex = i;
                  executorService.submit(() -> {
                        dealData(threadRangeArray[threadIndex].getStart(), threadRangeArray[threadIndex].getEnd());
                        countDownLatch.countDown();
                  });
            }
            //线程池 等待10s
            executorService.awaitTermination(10, TimeUnit.SECONDS);
            //关闭线程 其实是将线程状态设置为中断标志  必须等待所有线程处理完任务,才能完全关闭
            executorService.shutdown();
            //必须等待两个线程执行完   会一直等待下去,当然也可以设置指定时间等待超时 await(timeout);
            countDownLatch.await();
      }

      private void dealData(long startId, long endId) {
            // 每次查询的起始游标
            long id = startId;
            System.out.println("ExecutorThread.dealData 开始执行 startId:"+startId+" ,endId{"+endId+"}");
            while (true) {
                  //查询最后一条记录id
                  Page page=new Page(1,PAGE_SIZE);
                  Page page1 = tMonkeykingDeviceService.page(page, new LambdaQueryWrapper<TMonkeykingDevice>()
                          .between(TMonkeykingDevice::getId,id,endId).orderByAsc(TMonkeykingDevice::getId));
                  List<TMonkeykingDevice> deviceList = page1.getRecords();
                  if (null != deviceList && deviceList.size() > 0) {
                        System.out.println("dealData_开始处理");
                        id=deviceList.get(deviceList.size()-1).getId();
                  }else{
                        System.out.println("dealData_处理结束了,开始处理");
                        break;
                  }
            }

      }

      private ThreadRange[] getThreadRange() {
            //定义一个指定大小的数组 
            ThreadRange[] threadRangeArray = new ThreadRange[THREAD_NUM];

            //查询数据库 获取本次操作的总条数
            long count = tMonkeykingDeviceService.count(new LambdaQueryWrapper<TMonkeykingDevice>()
                    .eq(TMonkeykingDevice::getCustomerId, 813975007076992L));

            //每次处理N条数据
            long eachThreadTotal = count / THREAD_NUM + 1;

            long id = 0;
            for (int i = 0; i < THREAD_NUM; i++) {
                  ThreadRange threadRange = new ThreadRange();
                  //设置数组处理的最小id
                  threadRange.setStart(id);
                  //查询最后一条记录id
                  Page page=new Page(eachThreadTotal,1);
                  Page page1 = tMonkeykingDeviceService.page(page, new         LambdaQueryWrapper<TMonkeykingDevice>()
                          .gt(TMonkeykingDevice::getId, id).orderByAsc(TMonkeykingDevice::getId));
                  List<TMonkeykingDevice> records = page1.getRecords();
                 //设置数组处理的最小id
                  if (null != records && records.size() > 0) {
                        id = records.get(0).getId();
                        threadRange.setEnd(id);
                  } else {
                        threadRange.setEnd(LONG_MAX);
                  }
                  threadRangeArray[i]=threadRange;
            }
            return threadRangeArray;
      }

    
    //线程池分批处理
    @Test
    public void test4() {
        long id = 0;
        while (true) {
            //分页查询出需要处理的数据
            Page page1 = tMonkeykingDeviceService.page(page, new LambdaQueryWrapper<TMonkeykingDevice>()
                    .gt(TMonkeykingDevice::getId, id).orderByAsc(TMonkeykingDevice::getId));
            List<TMonkeykingDevice> records = page1.getRecords();
            if (CollectionUtils.isEmpty(records)) {
                break;
            }
            id = records.get(0).getId();
            
            //开启线程池处理数据
            ThreadFactory threadFactory = new BasicThreadFactory.Builder().namingPattern("thread-CarRangeAddAllJob-%s").build();
            ThreadPoolExecutor executor = new ThreadPoolExecutor(THREAD_NUM , THREAD_NUM , 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(list.size()), threadFactory);

            try {
                CountDownLatch countDownLatch = new CountDownLatch(records.size());
                list.forEach(phoenixCar -> executor.execute(() -> {
                    try {
                        //处理逻辑
                        addCarRegionRelation(records);
                    } catch (Exception e) {
                        logger.error("异常", e);
                    } finally {
                        countDownLatch.countDown();
                    }
                }));
                countDownLatch.await();
            } catch (Exception e) {
                logger.error("异常 ", e);
            } finally {
                executor.shutdown();
            }
        }

    }

涉及工具类 : ExecutorServiceUtil 

import com.google.common.util.concurrent.ThreadFactoryBuilder;

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * 〈线程池工具类〉
 *
 * @author lzj
 * @create 2019/8/22
 */
public class ExecutorServiceUtil {


    private static Lock LOCK = new ReentrantReadWriteLock().readLock();
    private static int corePoolSize = 1;
    private static int maximumPoolSize = 32;
    private static long keepAliveTime = 0L;
    private static BlockingQueue<Runnable> workQueue = null;

    private static ExecutorService threadPool;

    /**
     * 由于整个JVM 使用一个线程池,如果关闭后续都关闭了,因此不关闭;
     * 随着整个JVM的生命周期而存在
     */
    private static void shutdown() {
        if (null != threadPool) {
            threadPool.shutdown();
        }
    }

    public static void execute(Runnable runnable) {
        getThreadPool().execute(runnable);
    }

    private static ExecutorService getThreadPool() {
        if (null == threadPool) {
            try {
                LOCK.lock();

                ThreadFactory namedThreadFactory = new ThreadFactoryBuilder()
                        .setNameFormat("executor-pool-%d").build();

                if (null == workQueue) {
                    workQueue = new LinkedBlockingQueue<>(64);
                }
                threadPool = new ThreadPoolExecutor(getCorePoolSize(), getMaximumPoolSize(), getKeepAliveTime(),
                    TimeUnit.MILLISECONDS, workQueue, namedThreadFactory, new ThreadPoolExecutor.CallerRunsPolicy());
            } catch (Exception e) {
                e.printStackTrace();
            } finally {
                LOCK.unlock();
            }
        }
        return threadPool;
    }

    public static int getCorePoolSize() {
        return corePoolSize;
    }

    public static void setCorePoolSize(int corePoolSize) {
        ExecutorServiceUtil.corePoolSize = corePoolSize;
    }

    public static int getMaximumPoolSize() {
        return maximumPoolSize;
    }

    public static void setMaximumPoolSize(int maximumPoolSize) {
        ExecutorServiceUtil.maximumPoolSize = maximumPoolSize;
    }

    public static long getKeepAliveTime() {
        return keepAliveTime;
    }

    public static void setKeepAliveTime(long keepAliveTime) {
        ExecutorServiceUtil.keepAliveTime = keepAliveTime;
    }

    public static BlockingQueue<Runnable> getWorkQueue() {
        return workQueue;
    }

    public static void setWorkQueue(BlockingQueue<Runnable> workQueue) {
        ExecutorServiceUtil.workQueue = workQueue;
    }
}
/**
 * 线程处理实体类
 *
 */
public class ThreadRange {
    
    //处理最小id
    private long start;
    //处理最大id
    private long end;

    public ThreadRange() {
    }

    public ThreadRange(long start, long end) {
        this.start = start;
        this.end = end;
    }

    public long getStart() {
        return start;
    }

    public void setStart(long start) {
        this.start = start;
    }

    public long getEnd() {
        return end;
    }

    public void setEnd(long end) {
        this.end = end;
    }
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值