C++面试八股文:如何避免死锁?

C++面试:深入探讨锁机制与多线程同步
本文是一次C++工程师面试的记录,涉及到了锁的概念、类型、使用方法,如互斥锁在C++11前后的实现,以及std::lock_guard和std::unique_lock的区别。面试中还讨论了死锁的产生和避免策略,以及adopt_lock_t、defer_lock_t、try_to_lock_t在std::unique_lock中的作用。

某日二师兄参加XXX科技公司的C++工程师开发岗位第31面:

面试官:什么是锁?有什么作用?

二师兄:在C++中,锁(Lock)是一种同步工具,用于保护共享资源,防止多个线程同时访问,从而避免数据竞争和不一致。

面试官:有哪些锁?

二师兄:从种类上分,可以分为普通锁、读写锁、递归锁等种类。

二师兄:从实现上分,可以分为互斥锁、自旋锁、信号量、条件变量等。

面试官:互斥锁如何使用?

二师兄:在C++11之前,C++便准层面并没有定义锁,锁的应用要依赖于平台。Linux下使用pthread库中的mutex

#include <pthread.h>
pthread_mutex_t mutex_ = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&mutex_);
//被保护的区域
pthread_mutex_unlock(&mutex_);

二师兄:C++11引入了std::mutex,统一了各个平台上互斥锁的使用:

#include <mutex>
std::mutex mutex_;
mutex_.lock();
//被保护的区域
mutex_.unlock();

面试官:pthread_mutexstd::mutex有没有非阻塞的api

二师兄:有的,分别是pthread_mutex_trylock()try_lock(),当获取不到锁时这两者并不阻塞当前线程,而是立即返回。需要注意的是,当pthread_mutex_trylock()获取到锁时返回0,而std::mutex::try_lock()方法获取不到锁时返回false

面试官:std::lock_guardstd::unique_lock用过吗?

二师兄:用过。

面试官:两者有什么相同点和不同点?

二师兄:相同点是两者都使用RAII(资源获取即初始化)技术实现的锁,支持自动上锁,自动解锁。

二师兄:不同点主要包括三个方面:

1.灵活性:std::unqiue_lock的灵活性要高于std::lock_guradstd::unique_lock可以在任何时间解锁和锁定,而std::lock_guard在构造时锁定,在析构时解锁,不能手动控制。

2.所有权:std::unique_lock支持所有权转移,而std::lock_gurad不支持。

3.性能:由于std::unique_lock的灵活性更高,它的性能可能会稍微低一些。

面试官:能实现一个lock_gurad吗?

二师兄:我尝试一下:

class lock_guard
{
    explicit lock_guard(std::mutex& m):mutex_(m)
    {
        mutex_.lock();
    }
    ~lock_guard()
    {
        mutex_unlock();
    }
private:
    std::mutex& mutex_;
};

面试官:为什么会发生死锁?

二师兄:当进程A持有锁1请求锁2,进程B持有锁2请求锁1时,两者都不会释放自己的锁,两者都需要对方的锁,就会造成死锁。当然现实中可能比这要复杂,但原理是相同的。

面试官:如何避免死锁?

二师兄:主要从以下几个方面入手:

1.避免循环等待,如果需要在业务中获取不同的锁,保证所有业务按照相同的顺序获取锁。

2.使用超时锁,当锁超时时,自动释放锁。

3.使用try_lock,当锁被占用时,返回false并继续执行。

4.锁的粒度尽量要小,只保护竟态数据而不是整个流程。

面试官:知道adopt_lock_t/defer_lock_t/try_to_lock_t这三种类型的用法吗?

二师兄:额。。不知道。。

面试官:好的,回去等通知吧。

让我们来看看最后一个问题:

知道adopt_lock_t/defer_lock_t/try_to_lock_t这三种类型的用法吗?

adopt_lock_t/defer_lock_t/try_to_lock_t都是空类,主要表示std::lock_guradstd::unqiue_lock的默认构造中的操作:

adopt_lock_t:默认互斥量已被当前线程锁定,不使用lock()方法对互斥量加锁:

std::mutex mtx_;
mtx_.lock();    //lock
{
    std::lock_guard<std::mutex> lock_(mtx_,std::adopt_lock);    //这里默认当前线程已经对mtx_加过锁
    ...
}//unlock

defer_lock_t:虽然我拥有了std::mutex的引用,但是在构造函数中并不调用lock()方法对互斥量加锁:

std::mutex mtx_;
{
    std::unique_lock<std::mutex> ulock_(mtx_,std::defer_lock);    //这里并没有加锁
    ulock_.lock();
    if(ulock_.owns_lock())
    {
        //locked
    }else
    {
        //unlocked
    }
}//if locked,unlock

try_to_lock_t:在构造函数执行是并不是使用lock()方法加锁,而是使用try_lock()方法加锁:

std::mutex mtx_;
{
    std::unique_lock<std::mutex> ulock_(mtx_,std::try_to_lock);    //这里mtx_如果没有被锁定,则加锁成功,否则加锁失败
    if(ulock_.owns_lock())
    {
        //locked
    }else
    {
        //unlocked
    }
}//if locked,unlock

adopt_lock_t可以用于std::lock_guradstd::unique_lock,而defer_lock_t/try_to_lock_t只能用于std::unique_lock

关注我,带你21天“精通”C++!(狗头)

混合动力汽车(HEV)模型的Simscape模型(Matlab代码、Simulink仿真实现)内容概要:本文档介绍了一个混合动力汽车(HEV)的Simscape模型,该模型通过Matlab代码和Simulink仿真工具实现,旨在对混合动力汽车的动力系统进行建模与仿真分析。模型涵盖了发动机、电机、电池、传动系统等关键部件,能够模拟车辆在不同工况下的能量流动与控制策略,适用于动力系统设计、能耗优化及控制算法验证等研究方向。文档还提及该资源属于一个涵盖多个科研领域的MATLAB仿真资源包,涉及电力系统、机器学习、路径规划、信号处理等多个技术方向,配套提供网盘下载链接,便于用户获取完整资源。; 适合人群:具备Matlab/Simulink使用基础的高校研究生、科研人员及从事新能源汽车系统仿真的工程技术人员。; 使用场景及目标:①开展混合动力汽车能量管理策略的研究与仿真验证;②学习基于Simscape的物理系统建模方法;③作为教学案例用于车辆工程或自动化相关课程的实践环节;④与其他优化算法(如智能优化、强化学习)结合,实现控制策略的优化设计。; 阅读建议:建议使用者先熟悉Matlab/Simulink及Simscape基础操作,结合文档中的模型结构逐步理解各模块功能,可在此基础上修改参数或替换控制算法以满足具体研究需求,同时推荐访问提供的网盘链接获取完整代码与示例文件以便深入学习与调试。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值