选择排序
假设排序从小到大,每次从未排序的子序列中找出最小的值,与这个子序列第一个值交换,i++;
template<typename T>
void selectionSort(T arr[], int n){
for(int i = 0 ; i < n ; i ++){
int minIndex = i;
for( int j = i + 1 ; j < n ; j ++ )
if( arr[j] < arr[minIndex] )
minIndex = j;
swap( arr[i] , arr[minIndex] );
}
}
插入排序
每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中,直到全部记录插入完成。
插入排序包括:直接插入排序,折半插入排序和希尔排序。
template<typename T>
void insertionSort(T arr[], int n){
for( int i = 1 ; i < n ; i ++ ) {
// 寻找元素arr[i]合适的插入位置
// 写法1
// for( int j = i ; j > 0 ; j-- )
// if( arr[j] < arr[j-1] )
// swap( arr[j] , arr[j-1] );
// else
// break;
// 写法2
// for( int j = i ; j > 0 && arr[j] < arr[j-1] ; j -- )
// swap( arr[j] , arr[j-1] );
// 写法3
T e = arr[i];
int j; // j保存元素e应该插入的位置
for (j = i; j > 0 && arr[j-1] > e; j--)
arr[j] = arr[j-1];
arr[j] = e;
}
return;
}
归并排序
// 将arr[l...mid]和arr[mid+1...r]两部分进行归并
template<typename T>
void __merge(T arr[], int l, int mid, int r){
//* VS不支持动态长度数组, 即不能使用 T aux[r-l+1]的方式申请aux的空间
//* 使用VS的同学, 请使用new的方式申请aux空间
//* 使用new申请空间, 不要忘了在__merge函数的最后, delete掉申请的空间:)
T aux[r-l+1];
//T *aux = new T[r-l+1];
for( int i = l ; i <= r; i ++ )
aux[i-l] = arr[i];
// 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
int i = l, j = mid+1;
for( int k = l ; k <= r; k ++ ){
if( i > mid ){ // 如果左半部分元素已经全部处理完毕
arr[k] = aux[j-l]; j ++;
}
else if( j > r ){ // 如果右半部分元素已经全部处理完毕
arr[k] = aux[i-l]; i ++;
}
else if( aux[i-l] < aux[j-l] ) { // 左半部分所指元素 < 右半部分所指元素
arr[k] = aux[i-l]; i ++;
}
else{ // 左半部分所指元素 >= 右半部分所指元素
arr[k] = aux[j-l]; j ++;
}
}
//delete[] aux;
}
// 递归使用归并排序,对arr[l...r]的范围进行排序
template<typename T>
void __mergeSort(T arr[], int l, int r){
if( l >= r )
return;
int mid = (l+r)/2;
__mergeSort(arr, l, mid);
__mergeSort(arr, mid+1, r);
__merge(arr, l, mid, r);
}
template<typename T>
void mergeSort(T arr[], int n){
__mergeSort( arr , 0 , n-1 );
}
归并排序优化
// 使用优化的归并排序算法, 对arr[l...r]的范围进行排序
template<typename T>
void __mergeSort2(T arr[], int l, int r){
// 优化2: 对于小规模数组, 使用插入排序
if( r - l <= 15 ){
insertionSort(arr, l, r);
return;
}
int mid = (l+r)/2;
__mergeSort2(arr, l, mid);
__mergeSort2(arr, mid+1, r);
// 优化1: 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[mid] > arr[mid+1] )
__merge(arr, l, mid, r);
}
template<typename T>
void mergeSort2(T arr[], int n){
__mergeSort2( arr , 0 , n-1 );
}
快速排序
// 对arr[l...r]部分进行partition操作
// 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
template <typename T>
int __partition(T arr[], int l, int r){
T v = arr[l];
int j = l; // arr[l+1...j] < v ; arr[j+1...i) > v
for( int i = l + 1 ; i <= r ; i ++ )
if( arr[i] < v ){
j ++;
swap( arr[j] , arr[i] );
}
swap( arr[l] , arr[j]);
return j;
}
// 对arr[l...r]部分进行快速排序
template <typename T>
void __quickSort(T arr[], int l, int r){
if( l >= r )
return;
int p = __partition(arr, l, r);
__quickSort(arr, l, p-1 );
__quickSort(arr, p+1, r);
}
template <typename T>
void quickSort(T arr[], int n){
__quickSort(arr, 0, n-1);
}
优化1
对近乎有序的数组
// 对arr[l...r]部分进行partition操作
// 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
template <typename T>
int _partition(T arr[], int l, int r){
// 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
swap( arr[l] , arr[rand()%(r-l+1)+l] );
T v = arr[l];
int j = l;
for( int i = l + 1 ; i <= r ; i ++ )
if( arr[i] < v ){
j ++;
swap( arr[j] , arr[i] );
}
swap( arr[l] , arr[j]);
return j;
}
// 对arr[l...r]部分进行快速排序
template <typename T>
void _quickSort(T arr[], int l, int r){
// 对于小规模数组, 使用插入排序进行优化
if( r - l <= 15 ){
insertionSort(arr,l,r);
return;
}
int p = _partition(arr, l, r);
_quickSort(arr, l, p-1 );
_quickSort(arr, p+1, r);
}
template <typename T>
void quickSort(T arr[], int n){
srand(time(NULL));
_quickSort(arr, 0, n-1);
}
优化2
避免包含大量重复值,双路快排
// 双路快速排序的partition
// 返回p, 使得arr[l...p-1] <= arr[p] ; arr[p+1...r] >= arr[p]
// 双路快排处理的元素正好等于arr[p]的时候要注意,详见下面的注释:)
template <typename T>
int _partition2(T arr[], int l, int r){
// 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
swap( arr[l] , arr[rand()%(r-l+1)+l] );
T v = arr[l];
// arr[l+1...i) <= v; arr(j...r] >= v
int i = l+1, j = r;
while( true ){
// 注意这里的边界, arr[i] < v, 不能是arr[i] <= v
// 思考一下为什么?
while( i <= r && arr[i] < v )
i ++;
// 注意这里的边界, arr[j] > v, 不能是arr[j] >= v
// 思考一下为什么?
while( j >= l+1 && arr[j] > v )
j --;
// 对于上面的两个边界的设定, 有的同学在课程的问答区有很好的回答:)
// 大家可以参考: http://coding.imooc.com/learn/questiondetail/4920.html
if( i > j )
break;
swap( arr[i] , arr[j] );
i ++;
j --;
}
swap( arr[l] , arr[j]);
return j;
}
// 对arr[l...r]部分进行快速排序
template <typename T>
void _quickSort(T arr[], int l, int r){
// 对于小规模数组, 使用插入排序进行优化
if( r - l <= 15 ){
insertionSort(arr,l,r);
return;
}
// 调用双路快速排序的partition
int p = _partition2(arr, l, r);
_quickSort(arr, l, p-1 );
_quickSort(arr, p+1, r);
}
template <typename T>
void quickSort(T arr[], int n){
srand(time(NULL));
_quickSort(arr, 0, n-1);
}
求逆序对(归并排序)
// 将arr[l...mid]和arr[mid+1...r]两部分进行归并
long long __merge(int arr[], int l, int mid, int r){
// T aux[r-l+1];
int *aux = new int[r-l+1];
for(int i=l;i<=r;i++){
aux[i-l]=arr[i];
}
long long res=0;
int i=l, j=mid+1;
for(int k=l;k<=r;k++){
if(i>mid){
arr[k]=aux[j-l];j++;
}
else if(j>r){
arr[k]=aux[i-1];i++;
}
else if(aux[i-l]<aux[j-l]){
arr[k]=aux[i-l];
i++;
}else{
arr[k]=aux[j-l];
j++;
res+=(long long)(mid-i+1);
}
}
delete[] aux;
return res;
}
// 求arr[l..r]范围的逆序数对个数
// 思考: 归并排序的优化可否用于求逆序数对的算法? :)
long long __inversionCount(int arr[], int l, int r){
if( l >= r )
return 0;
int mid = l + (r-l)/2;
// 求出 arr[l...mid] 范围的逆序数
long long res1 = __inversionCount( arr, l, mid);
// 求出 arr[mid+1...r] 范围的逆序数
long long res2 = __inversionCount( arr, mid+1, r);
return res1 + res2 + __merge( arr, l, mid, r);
}
// 递归求arr的逆序数对个数
long long inversionCount(int arr[], int n){
return __inversionCount(arr, 0, n-1);
}
求第K小的数
// 对arr[l...r]部分进行partition操作
// 返回p, 使得arr[l...p-1] < arr[p] ; arr[p+1...r] > arr[p]
template <typename T>
int __partition(T arr[], int l, int r){
// 随机在arr[l...r]的范围中, 选择一个数值作为标定点pivot
swap( arr[l] , arr[rand()%(r-l+1)+l] );
T v = arr[l];
int j = l;
for( int i = l + 1 ; i <= r ; i ++ )
if( arr[i] < v ){
j ++;
swap( arr[j] , arr[i] );
}
swap( arr[l] , arr[j]);
return j;
}
// 对arr[l...r]部分进行快速排序
template <typename T>
int _quickSort(T arr[], int l, int r, int k){
if(r==l)
return arr[l];
int p = __partition(arr, l, r);
if(k<p){
return _quickSort(arr, l, p-1 ,k);
}else if(k>p){
return _quickSort(arr, p+1, r,k);
}else
return arr[p];
}
//找第k小
template <typename T>
int quickSort(T arr[], int n,int k){
srand(time(NULL));
return _quickSort(arr, 0, n-1, k);
}