定义变量
/**
* node数组最大容量
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* 默认容量
*/
private static final int DEFAULT_CAPACITY = 16;
/**
* 数组可能最大值,需要与toArray()相关方法关联
*/
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* 并发级别,遗留下来的,兼容以前的版本
*/
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
/**
* 负载因子
*/
private static final float LOAD_FACTOR = 0.75f;
/**
* 链表转红黑树的阀值
*/
static final int TREEIFY_THRESHOLD = 8;
/**
* 红黑树转化为链表的阀值
*/
static final int UNTREEIFY_THRESHOLD = 6;
/**
* 链表转化红黑树最小的node数组大小
*/
static final int MIN_TREEIFY_CAPACITY = 64;
private static final int MIN_TRANSFER_STRIDE = 16;
private static int RESIZE_STAMP_BITS = 16;
/**
* help resize的最大线程数
*/
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
/**
* sizeCtl中记录size大小的偏移量
*/
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
static final int MOVED = -1; // forwarding nodes的hash值
static final int TREEBIN = -2; // 树节点hash值
static final int RESERVED = -3; // ReservationNode 的hash值
/**
* Node数组
*/
transient volatile Node<K,V>[] table;
/**
* 用来控制表初始化和扩容的,默认值为0,当在初始化的时候指定了大小,这会将这个大小保存在sizeCtl中,大小为数组的0.75
* 当为负的时候,说明表正在初始化或扩张, -1表示初始化,-(1+n) n:表示活动的扩张线程
*/
private transient volatile int sizeCtl;
构造方法
/**
* sizeCtl的值为初始容量的1.5倍initialCapacity+1后计算table的大小,
* 如initialCapacity=10,向上取2的倍数是16,
* initialCapacity=11,向上取2的倍数是32
*/
public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
}
计算数组容量
/**
* 数组容量计算,c向上取2点倍数,如果c的值为10,则返回16,如果c为17则返回32,以此类推
*/
private static final int tableSizeFor(int c) {
int n = c - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
PUT方法分析
public V put(K key, V value) {
return putVal(key, value, false);
}
/**
* put 核心
*/
final V putVal(K key, V value, boolean onlyIfAbsent) {
//当key或value为null抛出空指向异常
if (key == null || value == null) throw new NullPointerException();
//计算key的hash值
int hash = spread(key.hashCode());
//用于记录链表的长度
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)//node数组为空时初始化
tab = initTable();
//计算数组下标,并把值赋给首节点f,当f为空时
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//做cas操作,如果成功,put结束,如果不成功,说明有并发存在,进入下一轮循环
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break;
}
//f的hash值为MOVED,说明正在扩容
else if ((fh = f.hash) == MOVED)
//帮助数据迁移
tab = helpTransfer(tab, f);
else {//如果走在这里,那说明首节点f不为空
V oldVal = null;
synchronized (f) {//获取数组下标首节点f的锁
if (tabAt(tab, i) == f) {
//首节点的hash值大于0,说明是链表
if (fh >= 0) {
binCount = 1;//记录链表的长度
for (Node<K,V> e = f;; ++binCount) {
K ek;
//key值相等时的操作
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//将该节点放到链表的最末端
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {//当f节点为红黑树
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) {
//当链表长度大于等于链表转红黑树的转化因子
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
初始化Node数组
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
if ((sc = sizeCtl) < 0)//sizeCtl<0说明被其他线程抢占了锁
Thread.yield();
//抢占了锁,cas操作一下,将SIZECTL设置为-1
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
//将n赋值为默认容量16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
sc = n - (n >>> 2);//sc为12
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
链表转红黑树
private final void treeifyBin(Node<K,V>[] tab, int index) {
Node<K,V> b; int n, sc;
if (tab != null) {
//当node数组长度小于64时,则进行数组扩容操作
if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
tryPresize(n << 1);
//首节点b
else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
synchronized (b) {//对b加锁
if (tabAt(tab, index) == b) {
//遍历链表,构建红黑树
TreeNode<K,V> hd = null, tl = null;
for (Node<K,V> e = b; e != null; e = e.next) {
TreeNode<K,V> p =
new TreeNode<K,V>(e.hash, e.key, e.val,
null, null);
if ((p.prev = tl) == null)
hd = p;
else
tl.next = p;
tl = p;
}
//将红黑树放到数组该下标位置
setTabAt(tab, index, new TreeBin<K,V>(hd));
}
}
}
}
}
数据迁移方法
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
// stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
// stride 可以理解为”步长“,有 n 个位置是需要进行迁移的
// 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE;
if (nextTab == null) {
try {
// 容量翻倍
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
//transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
transferIndex = n;
}
int nextn = nextTab.length;
//正在被迁移的 Node,hash值设置为MOVED
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
//advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
boolean advance = true;
boolean finishing = false;
//i是数组的索引位置,bound是边界
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {//所有迁移已经完成
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
//cas操作对sizeCtl-1,完成自己的任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n;
}
}
//如果索引位置为空,则放入刚刚初始化的ForwardingNode节点
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)//代表位置已经迁移过了
advance = true;
else {
synchronized (f) {//对数据首节点加锁,处理该位置的迁移工作
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {//链表节点
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
//ln链表节点放到数组i位置
setTabAt(nextTab, i, ln);
//hn链表节点放到数组i+n位置
setTabAt(nextTab, i + n, hn);
//愿数组位置i上设置为fwd,说明已经迁移完
setTabAt(tab, i, fwd);
//该位置迁移完成
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
本文详细剖析了ConcurrentHashMap的工作原理,包括其内部结构、初始化过程、扩容机制、链表到红黑树转换条件及数据迁移流程。ConcurrentHashMap通过CAS操作实现线程安全,采用分段锁和红黑树提高并发性能。
478

被折叠的 条评论
为什么被折叠?



