JDK源码分析系列--ConcurrentHashMap(1.8)

本文详细剖析了ConcurrentHashMap的工作原理,包括其内部结构、初始化过程、扩容机制、链表到红黑树转换条件及数据迁移流程。ConcurrentHashMap通过CAS操作实现线程安全,采用分段锁和红黑树提高并发性能。

定义变量

    /**
     * node数组最大容量
     */
    private static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * 默认容量
     */
    private static final int DEFAULT_CAPACITY = 16;

    /**
     * 数组可能最大值,需要与toArray()相关方法关联
     */
    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

    /**
     * 并发级别,遗留下来的,兼容以前的版本
     */
    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

    /**
     * 负载因子
     */
    private static final float LOAD_FACTOR = 0.75f;

    /**
     * 链表转红黑树的阀值
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * 红黑树转化为链表的阀值
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * 链表转化红黑树最小的node数组大小
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    private static final int MIN_TRANSFER_STRIDE = 16;

    private static int RESIZE_STAMP_BITS = 16;

    /**
     * help resize的最大线程数
     */
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

    /**
     * sizeCtl中记录size大小的偏移量
     */
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

    static final int MOVED     = -1; // forwarding nodes的hash值

    static final int TREEBIN   = -2; // 树节点hash值

    static final int RESERVED  = -3; // ReservationNode 的hash值
    
    /**
     * Node数组
     */
    transient volatile Node<K,V>[] table;
    
    /**
     * 用来控制表初始化和扩容的,默认值为0,当在初始化的时候指定了大小,这会将这个大小保存在sizeCtl中,大小为数组的0.75            
     * 当为负的时候,说明表正在初始化或扩张, -1表示初始化,-(1+n) n:表示活动的扩张线程
     */
    private transient volatile int sizeCtl;

构造方法

    /**
     * sizeCtl的值为初始容量的1.5倍initialCapacity+1后计算table的大小,
     * 如initialCapacity=10,向上取2的倍数是16,
     * initialCapacity=11,向上取2的倍数是32
     */
    public ConcurrentHashMap(int initialCapacity) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        this.sizeCtl = cap;
    }

计算数组容量

    /**
     * 数组容量计算,c向上取2点倍数,如果c的值为10,则返回16,如果c为17则返回32,以此类推
     */
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

PUT方法分析

    public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** 
     * put 核心
     */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        //当key或value为null抛出空指向异常
        if (key == null || value == null) throw new NullPointerException();
        //计算key的hash值
        int hash = spread(key.hashCode());
        //用于记录链表的长度
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)//node数组为空时初始化
                tab = initTable();
            //计算数组下标,并把值赋给首节点f,当f为空时
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                //做cas操作,如果成功,put结束,如果不成功,说明有并发存在,进入下一轮循环
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   
            }
            //f的hash值为MOVED,说明正在扩容
            else if ((fh = f.hash) == MOVED)
                //帮助数据迁移
                tab = helpTransfer(tab, f);
            else {//如果走在这里,那说明首节点f不为空
                V oldVal = null;
                synchronized (f) {//获取数组下标首节点f的锁
                    if (tabAt(tab, i) == f) {
                        //首节点的hash值大于0,说明是链表
                        if (fh >= 0) {
                            binCount = 1;//记录链表的长度
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                //key值相等时的操作
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                //将该节点放到链表的最末端
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {//当f节点为红黑树
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    //当链表长度大于等于链表转红黑树的转化因子
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

初始化Node数组

    private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
            if ((sc = sizeCtl) < 0)//sizeCtl<0说明被其他线程抢占了锁
                Thread.yield(); 
            //抢占了锁,cas操作一下,将SIZECTL设置为-1
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    if ((tab = table) == null || tab.length == 0) {
                        //将n赋值为默认容量16
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        sc = n - (n >>> 2);//sc为12
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

链表转红黑树

    private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            //当node数组长度小于64时,则进行数组扩容操作
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                tryPresize(n << 1);
            //首节点b
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                synchronized (b) {//对b加锁
                    if (tabAt(tab, index) == b) {
                        //遍历链表,构建红黑树
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p =
                                new TreeNode<K,V>(e.hash, e.key, e.val,
                                                  null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        //将红黑树放到数组该下标位置
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }

数据迁移方法

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        int n = tab.length, stride;
        // stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
        // stride 可以理解为”步长“,有 n 个位置是需要进行迁移的
        // 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; 
        if (nextTab == null) {            
            try {
                // 容量翻倍
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            //transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
            transferIndex = n;
        }
        int nextn = nextTab.length;
        //正在被迁移的 Node,hash值设置为MOVED
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        //advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
        boolean advance = true;
        boolean finishing = false; 
        
        //i是数组的索引位置,bound是边界
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                else if (U.compareAndSwapInt
                         (this, TRANSFERINDEX, nextIndex,
                          nextBound = (nextIndex > stride ?
                                       nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                if (finishing) {//所有迁移已经完成
                    nextTable = null;
                    table = nextTab;
                    sizeCtl = (n << 1) - (n >>> 1);
                    return;
                }
                //cas操作对sizeCtl-1,完成自己的任务
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; 
                }
            }
            //如果索引位置为空,则放入刚刚初始化的ForwardingNode节点
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            else if ((fh = f.hash) == MOVED)//代表位置已经迁移过了
                advance = true; 
            else {
                synchronized (f) {//对数据首节点加锁,处理该位置的迁移工作
                    if (tabAt(tab, i) == f) {
                        Node<K,V> ln, hn;
                        if (fh >= 0) {//链表节点
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            //ln链表节点放到数组i位置
                            setTabAt(nextTab, i, ln);
                            //hn链表节点放到数组i+n位置
                            setTabAt(nextTab, i + n, hn);
                            //愿数组位置i上设置为fwd,说明已经迁移完
                            setTabAt(tab, i, fwd);
                            //该位置迁移完成
                            advance = true;
                        }
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值