SKIL/工作流程/可视化

本文介绍如何使用SKIL进行数据可视化和模型监控,包括通过T-SNE和UMAP降维,以及利用Deeplarning4j UI和TensorBoard可视化DL4J网络和TensorFlow模型的训练过程。

可视化

有两种方法可以在SKIL中可视化数据。可视化对于解释结果和理解其他复杂数组很有用,并且通常需要通过T-SNE或UMAP等算法实现降维。

 

训练可视化
使用Deeplarming4J用户界面
如果你正在使用deeplearning4j,则可以在训练模型时可视化统计数据。SKIL预先打包了一个ui服务器,该服务器将通过将ui标志传递到skil start脚本来自动启动:

#如果没有设置SKIL_HOME和JAVA_HOME变量,请取消对以下行的注释
# export SKIL_HOME=/opt/skil
# export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk

# 首先进行授权
$SKIL_HOME/sbin/skil login --userId admin --password admin # 你可能有不同的用户名和密码,请相应地替换它们。

# 启动
$SKIL_HOME/sbin/skil ui

 

对于docker,你需要转发端口9002以访问UI。

# 从Docker启动,确保你映射了端口9002
docker run --rm -it -p 9008:9008 -p 8080:8080 -p 9002:9002 skymindops/skil-ce bash /start-skil.sh

稍后,你可以在笔记本中添加一个%sh单元,专门启动UI服务器:

%sh

#如果没有设置SKIL_HOME和JAVA_HOME变量,请取消对以下行的注释
# export SKIL_HOME=/opt/skil
# export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk

# 首先进行授权
$SKIL_HOME/sbin/skil login --userId admin --password admin # 你可能有不同的用户名和密码,请相应地替换它们。

# 启动
$SKIL_HOME/sbin/skil ui

skil ui命令的默认参数及其详细信息如下:

参数默认值详情
uiPort9002用于用户界面服务器的端口
enableRemoteTrue是否启用远程。它控制是否允许远程连接。

 

上面的命令$SKIL_HOME/sbin/skil ui将在端口9002启动一个用户界面服务器,默认情况下允许远程连接。你可以进一步提供--uiPort和--enableMemote参数,以在其他端口启动ui服务器,或者如果你想控制到该服务器的远程连接。

 

$SKIL_HOME/sbin/skil ui --uiPort 9010 --enableRemote False # 在端口9010启动UI服务器,禁用远程连接

 

Visualizing the DL4J Network

You will need to route your StatsListener to the UI port (default 9002). You can view the demo for DL4J UI with the default notebook that is created when you create an "Experiment" in SKIL and uncomment the following lines in the 4th paragraph.

可视化DL4J网络
你需要将StatsListener路由到UI端口(默认9002)。你可以使用在skil中创建“实验”时创建的默认笔记本来查看DL4J UI的演示,并在第4段中取消对以下行的注释。

//val remoteUIRouter = new RemoteUIStatsStorageRouter("http://localhost:9002")
//model.setListeners(new StatsListener(remoteUIRouter))

在取消对上述行的注释后,运行笔记本的前四段,然后在UI端口上可视化网络(此处,默认情况下,它设置为笔记本中的端口9002),这看起来类似于下面的图像。

Visualizing the model in DL4J UI.

在DL4J UI中可视化模型。
有关更多信息和用法,请参阅Deeplarning4j UI文档。
Tensorboard中TensorFlow模型的可视化
SKIL预先打包了TensorBoard,允许你可视化TensorFlow模型的训练。在笔记本中进行训练时,你可以以标准方式使用Tensorboard:

# bare metal installation
tensorboard --logdir=path/to/log-directory

# when using Docker, manually start a TensorBoard instance
docker exec -it skil_container /bin/bash
tensorboard --logdir=path/to/log-directory

有关完整用法和示例,请参阅Tensorboard文档

 

解释器功能
由于笔记本由ApacheZeppelin提供,许多内置可视化功能可用于结构化和非结构化数据。这是一个提供演示的可视化效果的示例笔记本
使用SQL可以实现最简单的可视化。如果在笔记本中创建一个%sql单元,并对Spark RDD或任何其他缓存数据执行SQL查询,则可以很容易地以原始表格格式查看输出。

 

%sql

select numPositions, count(1) value
from stats 
where numPositions < 65
group by numPositions
order by numPositions

 

如果你喜欢手动使用内置可视化功能,还可以通过使输出以%table 开头并用\t 分隔每行数据来打印表。

%spark

println("%table\nx\ty")
(1 to 340).map(i => i.toDouble / 50).map(x => (x, Math.sin(x))).foreach{case (x,y) => println(x + "\t" + y)}

 

数据摘要

除了Zeppelin支持的内置功能外,SKIL还允许你对输入数据进行DataVec分析,并计算数据集的统计信息。你可以以内联方式呈现结果,也可以查看端口9508。如果使用docker,请记住在运行你的SKIL容器之前添加-p 9508:9508。

 

%spark

import org.datavec.spark.transform.AnalyzeSpark
import org.datavec.api.transform.ui.HtmlAnalysis
import java.io.File

val dataAnalysis = AnalyzeSpark.analyze(tp.getFinalSchema(), processedData, 10)

// 提交到文件
HtmlAnalysis.createHtmlAnalysisFile(dataAnalysis, new File("/opt/skil/plugins/files/sf-analysis.html"))

// 提交内联
print("%html <iframe src=\"http://localhost:9508/files/sf-analysis.html\"></iframe>")

 

结果将像一个常规的HTML页面,其中包含列和数据集统计信息。

代码转载自:https://pan.quark.cn/s/f87b8041184b Language: 中文 欢迎来到戈戈圈! 当你点开这个存储库的时候,你会看到戈戈圈的图标↓ 本图片均在知识共享 署名-相同方式共享 3.0(CC BY-SA 3.0)许可协议下提供,如有授权遵照授权协议使用。 那么恭喜你,当你看到这个图标的时候,就代表着你已经正式成为了一名戈团子啦! 欢迎你来到这个充满爱与希望的大家庭! 「与大家创造更多快乐,与人们一起改变世界。 」 戈戈圈是一个在中国海南省诞生的创作企划,由王戈wg的妹妹于2018年7月14日正式公开。 戈戈圈的创作类型广泛,囊括插画、小说、音乐等各种作品类型。 戈戈圈的目前成员: Contributors 此外,支持戈戈圈及本企划的成员被称为“戈团子”。 “戈团子”一词最初来源于2015年出生的名叫“团子”的大熊猫,也因为一种由糯米包裹着馅料蒸熟而成的食品也名为“团子”,不仅有团圆之意,也蕴涵着团结友爱的象征意义和大家的美好期盼,因此我们最终于2021年初决定命名戈戈圈的粉丝为“戈团子”。 如果你对戈戈圈有兴趣的话,欢迎加入我们吧(σ≧︎▽︎≦︎)σ! 由于王戈wg此前投稿的相关视频并未详细说明本企划的信息,且相关视频的表述极其模糊,我们特此创建这个存储库,以文字的形式向大家介绍戈戈圈。 戈戈圈自2018年7月14日成立至今,一直以来都秉持着包容开放、和谐友善的原则。 我们深知自己的责任和使命,始终尊重社会道德习俗,严格遵循国家法律法规,为维护社会稳定和公共利益做出了积极的贡献。 因此,我们不允许任何人或组织以“戈戈圈”的名义在网络平台或现实中发布不当言论,同时我们也坚决反对过度宣传戈戈圈的行为,包括但不限于与戈戈圈无关的任何...
内容概要:本文详细介绍了一个基于YOLOv8的血细胞智能检测系统全流程开发指南,涵盖从环境搭建、数据准备、模型训练与验证到UI交互系统开发的完整实践过程。项目利用YOLOv8高精度、高速度的优势,实现对白细胞、红细胞和血小板的自动识别与分类,准确率超过93%,单张图像检测仅需0.3秒。通过公开或自建血细胞数据集,结合LabelImg标注工具和Streamlit开发可视化界面,构建了具备图像上传、实时检测、结果统计与异常提示功能的智能系统,并提供了论文撰写与成果展示建议,强化其在医疗场景中的应用价值。; 适合人群:具备一定Python编程与深度学习基础,从事计算机视觉、医疗AI相关研究或项目开发的高校学生、科研人员及工程技术人员,尤其适合需要完成毕业设计或医疗智能化项目实践的开发者。; 使用场景及目标:①应用于医院或检验机构辅助医生进行血涂片快速筛查,提升检测效率与一致性;②作为深度学习在医疗影像领域落地的教学案例,掌握YOLOv8在实际项目中的训练、优化与部署流程;③用于学术论文写作与项目成果展示,理解技术与临床需求的结合方式。; 阅读建议:建议按照“数据→模型→系统→应用”顺序逐步实践,重点理解数据标注规范、模型参数设置与UI集成逻辑,同时结合临床需求不断优化系统功能,如增加报告导出、多类别细粒度分类等扩展模块。
基于蒙特卡洛,copula函数,fuzzy-kmeans获取6个典型场景进行随机优化多类型电动汽车采用分时电价调度,考虑上级电网出力、峰谷差惩罚费用、风光调度、电动汽车负荷调度费用和网损费用内容概要:本文围绕多类型电动汽车在分时电价机制下的优化调度展开研究,采用蒙特卡洛模拟、Copula函数和模糊K-means聚类方法获取6个典型场景,并在此基础上进行随机优化。模型综合考虑了上级电网出力、峰谷差惩罚费用、风光可再生能源调度、电动汽车负荷调度成本以及电网网损费用等多个关键因素,旨在实现电力系统运行的经济性与稳定性。通过Matlab代码实现相关算法,验证所提方法的有效性与实用性。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源、智能电网、电动汽车调度相关工作的工程技术人员。; 使用场景及目标:①用于研究大规模电动汽车接入电网后的负荷调控策略;②支持含风光等可再生能源的综合能源系统优化调度;③为制定合理的分时电价政策及降低电网峰谷差提供技术支撑;④适用于学术研究、论文复现与实际项目仿真验证。; 阅读建议:建议读者结合文中涉及的概率建模、聚类分析与优化算法部分,动手运行并调试Matlab代码,深入理解场景生成与随机优化的实现流程,同时可扩展至更多元化的应用场景如V2G、储能协同调度等。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值