尾递归:
函数调用自身,称为递归。如果尾调用自身,就称为尾递归。
- 递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。
function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}
factorial(5) // 120
上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。
- 如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}
factorial(5, 1) // 120
还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。
- 非尾递归的 Fibonacci 数列实现如下。
function Fibonacci (n) {
if ( n <= 1 ) {return 1};
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
Fibonacci(10) // 89
Fibonacci(100) // 超时
Fibonacci(500) // 超时
- 尾递归优化过的 Fibonacci 数列实现如下。
{/*
n 代表序列数
ac1代表上一次序列之和
ac2代表本次序列之和
*/}
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};
return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}
Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity
- 由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 亦是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。
以上来自阮一峰老师的ES6,个人对代码加上了点注释(原文链接:https://es6.ruanyifeng.com/#docs/function)
扩展:
根据序列数求Fibonacci数列
- 代码:
//n代表序列数,ac1代表上一次序列之和,ac2代表本次序列之和,arr是数列
function Fibonacci(n,ac1=1,ac2=1,arr=[]){
if (n<=1) {return arr}
arr.push(ac1);
return Fibonacci(n-1,ac2,ac1+ac2,arr)
}
log(Fibonacci(10))//[1, 1, 2, 3, 5, 8, 13, 21, 34]
log(Fibonacci(1000))//[1, 1, 2, 3, 5,...]
log(Fibonacci(10000))//Maximum call stack size exceeded
- 修改一下代码,添加一个默认为空的数组,将每次的序列之和添加到数列之中
- 用到了尾递归函数,每次调用只存在一个调用帧,不会发生栈溢出