convert a sorted array into a balanced binary search tree

本文介绍了一种方法,通过选择排序数组的中位数元素作为根节点,将其转换为平衡二叉搜索树。这种方法利用了递归和分治策略,确保了时间复杂度为O(N),并提供了与二分查找相似的代码实现。

Question:

Given a sorted array, and converted it into a balanced binary search tree. 

Solution:
If you would have to choose an array element to be the root of a balanced BST, which element would you pick? The root of a balanced BST should be the middle element from the sorted array. You would pick the middle element from the sorted array in each iteration. You then create a node in the tree initialized with this element. After the element is chosen, what is left? Could you identify the sub-problems within the problem? There are two arrays left — The one on its left and the one on its right. These two arrays are the sub-problems of the original problem, since both of them are sorted. Furthermore, they are subtrees of the current node’s left and right child.

The code below creates a balanced BST from the sorted array in O(N) time (N is the number of elements in the array). Compare how similar the code is to a binary search algorithm. Both are using the divide and conquer methodology.

Node sortedArrayToBST(int arr[], int start, int end) {
	if (start > end) return null;
	// same as (start+end)/2, avoids overflow.
	int mid = start + (end - start) / 2;
	Node node = new Node(arr[mid]);
	node.leftChild = sortedArrayToBST(arr, start, mid-1);
	node.rightChild = sortedArrayToBST(arr, mid+1, end);
	return node;
}	 
Node sortedArrayToBST(int arr[], int n) {
	return sortedArrayToBST(arr, 0, n-1);
}
From:  http://www.ihas1337code.com/2010/11/convert-sorted-array-into-balanced.html

扩展:
这个问题常常会是其它问题的一个子问题,比如,如何把两个BST合并成一个BST,要求时间复杂度为O(N)。
大致的思路是:用in-order walk得到两组排序的数组(O(N)),合并两个数组(O(N)),然后就是把数组转化成平衡二叉树(O(N))。

【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值