生产者消费者问题源程序

本文通过一个多线程同步问题的经典案例——生产者消费者问题,详细介绍了如何使用Java模拟这一问题。通过一个固定大小的缓冲区(篮子)来协调生产者(面包师傅)和消费者(顾客)之间的操作。

问题描述:

生产者消费者问题(Producer-consumer problem)是一个多线程同步问题的经典案例。该问题描述了两个共享固定大小缓冲区的线程——即所谓的“生产者”和“消费者”——在实际运行时会发生的问题。生产者的主要作用是生成一定量的数据放到缓冲区中,然后重复此过程。与此同时,消费者也在缓冲区消耗这些数据。该问题的关键就是要保证生产者不会在缓冲区满时加入数据,消费者也不会在缓冲区中空时消耗数据。


要解决该问题,就必须让生产者在缓冲区满时休眠(要么干脆就放弃数据),等到下次消费者消耗缓冲区中的数据的时候,生产者才能被唤醒,开始往缓冲区添加数据。同样,也可以让消费者在缓冲区空时进入休眠,等到生产者往缓冲区添加数据之后,再唤醒消费者。


如何模拟这个问题?

为了模拟这个问题,我们假设有一个篮子,这个篮子用于装刚刚生产出来的面包,这个篮子能够容纳的面包个数是固定的,所以,如果生产者(面包师傅)发现篮子已经满了,那么就返回厨房等待,当消费者拿掉了一个面包后,消费者会通知厨房的面包师傅,这个篮子已经不是满的了,可以再往里面加面包了。


同理,如果消费者发现篮子里没有面包了,那么他也只能在厅堂等着,当面包师傅往篮子里加了面包以后,面包师傅会通知那些在厅堂里等候拿面包的人,篮子里面已经有面包了。

Bread类用于模拟面包

public class Bread {
	int id;

	public Bread(int id) {
		this.id = id;
	}

	public String toString() {
		return "Bread: " + id;
	}
}

public class BreadBucket {
	int index = 0;
	Bread[] container;

	public BreadBucket(int size) {
		container = new Bread[size];
	}

	public synchronized void putBread(Bread bread) {
		while (index == container.length) {
			try {
				this.wait(); // The bucket is full, and the producer needs to wait
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
		container[index] = bread;
		index++;
		System.out.println("+++++++New bread added: " + bread);
		System.out.println("+++++++Current # of bread in the bucket:" + index);
		this.notify(); // notify consumer, the bucket is not empty.

	}

	public synchronized void takeBread() {
		while (index == 0) {
			try {
				this.wait(); // The consumer needs to wait because the bucket is empty.
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
		index--;
		Bread bread = container[index];
		System.out.println("-------Consumed bread: " + bread);
		System.out.println("-------Current # of bread in the bucket:" + index);
		this.notify(); // notify producer, the bucket is not full
	}
}

public class Consumer implements Runnable {

	BreadBucket container;

	public Consumer(BreadBucket container) {
		this.container = container;
	}

	@Override
	public void run() {
		while (true) {
			container.takeBread();
			try {
				Thread.sleep(2000);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}
}

public class Producer implements Runnable {

	BreadBucket container;
	int id = 1;

	public Producer(BreadBucket container) {
		this.container = container;
	}

	@Override
	public void run() {
		while (true) {
			Bread bread = new Bread(id++);
			container.putBread(bread);

			try {
				Thread.sleep(200);
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}
}

public class Test {

	public static void main(String[] args) {

		BreadBucket container = new BreadBucket(10);
		Producer p = new Producer(container);
		Consumer c = new Consumer(container);

		new Thread(p).start();
		new Thread(c).start();
	}
}

转载请注明出处:blog.youkuaiyun.com/beiyetengqing。


1、实验目的 (1)掌握基本的同步互斥算法,理解生产者消费者同步的问题模型。 (2)了解Windows 2000/XP中多线程的并发执行机制,线程间的同步和互斥。 (3)学习使用Windows2000/XP中基本的同步对象,掌握相应的API。 2、实验要求 (1)创建生产者消费者线程 在Windows2000环境下,创建一个控制台进程,在此进程中创建n个线程来模拟生产者或者消费者。这些线程的信息由本程序定义的“测试用例文件”中予以指定。 该文件的格式和含义如下: 3 1 P 3 2 P 4 3 C 4 1 4 P 2 5 C 3 1 2 4 第一行说明程序中设置几个临界区,其余每行分别描述了一个生产者或者消费者线程的信息。每一行的各字段间用Tab键隔开。不管是消费者还是生产者,都有一个对应的线程号,即每一行开始字段那个整数。第二个字段用字母P或者C区分是生产者还是消费者。第三个字段表示在进入相应线程后,在进行生产和消费动作前的休眠时间,以秒计时;这样做的目的是可以通过调整这一列参数,控制开始进行生产和消费动作的时间。如果是代表生产者,则该行只有三个字段。如果代表消费者,则该行后边还有若干字段,代表要求消费的产品所对应的生产者的线程号。所以务必确认这些对应的线程号存在并且该线程代表一个生产者。 (2)生产和消费的规则 在按照上述要求创建线程进行相应的读写操作时,还需要符合以下要求: ①共享缓冲区存在空闲空间时,生产者即可使用共享缓冲区。 ②从上边的测试数据文件例子可以看出,某一生产者生产一个产品后,可能不止一个消费者,或者一个消费者多次地请求消费该产品。此时,只有当所有的消费需求都被满足以后,该产品所在的共享缓冲区才可以被释放,并作为空闲空间允许新的生产者使用。 ③每个消费者线程的各个消费需求之间存在先后顺序。例如上述测试用例文件包含一行信息“5 C 3 l 2 4”,可知这代表一个消费者线程,该线程请求消费1,2,4号生产者线程生产的产品。而这种消费是有严格顺序的,消费1号线程产品的请求得到满足后才能继续往下请求2号生产者线程的产品。 ④要求在每个线程发出读写操作申请、开始读写操作和结束读写操作时分别显示提示信息。 (3)相关基础知识 本实验所使用的生产者消费者模型具有如下特点: 本实验的多个缓冲区不是环形循环的,也不要求按顺序访问。生产者可以把产品放到目前某一个空缓冲区中。 消费者只消费指定生产者的产品。 在测试用例文件中指定了所有的生产和消费的需求,只有当共享缓冲区的数据满足了所有关于它的消费需求后,此共享缓冲区才可以作为空闲空间允许新的生产者使用。 本实验在为生产者分配缓冲区时各生产者间必须互斥,此后各个生产者的具体生产活动可以并发。而消费者之间只有在对同一产品进行消费时才需要互斥,同时它们在消费过程结束时需要判断该消费对象是否已经消费完毕并清除该产品。 Windows用来实现同步和互斥的实体。在Windows中,常见的同步对象有:信号量(Semaphore)、互斥量(Mutex)、临界段(CriticalSection)等。使用这些对象都分为三个步骤,一是创建或者初始化:接着请求该同步对象,随即进入临界区,这一步对应于互斥量的上锁;最后释放该同步对象,这对应于互斥量的解锁。这些同步对象在一个线程中创建,在其他线程中都可以使用,从而实现同步互斥。
生产者消费者问题算法实现》 设计思想 因为有多个缓冲区,所以生产者线程没有必要在生成新的数据之前等待最后一个数据被消费者线程处理完毕。同样,消费者线程并不一定每次只能处理一个数据。在多缓冲区机制下,线程之间不必互相等待形成死锁,因而提高了效率。   多个缓冲区就好像使用一条传送带替代托架,传送带上一次可以放多个产品。生产者在缓冲区尾加入数据,而消费者则在缓冲区头读取数据。当缓冲区满的时候,缓冲区就上锁并等待消费者线程读取数据;每一个生产或消费动作使得传送带向前移动一个单位,因而,消费者线程读取数据的顺序和数据产生顺序是相同的。 可以引入一个count计数器来表示已经被使用的缓冲区数量。用hNotEmptyEvent 和hNotFullEvent 来同步生产者消费者线程。每当生产者线程发现缓冲区满( count=BufferSize ),它就等待hNotEmptyEvent 事件。同样,当消费者线程发现缓冲区空,它就开始等待hNotEmptyEvent。生产者线程写入一个新的数据之后,就立刻发出hNotEmptyEvent 来唤醒正在等待的消费者线程;消费者线程在读取一个数据之后,就发出hNotFullEvent 来唤醒正在等待的生产者线程。 程序的设计思想大致为:设置一while循环,pi生产者访问临界区,得到权限访问缓冲区,如果缓冲区满的,则等待,直到缓冲区非满;访问互斥锁,当得到互斥锁且缓冲区非满时,跳出while循环,开始产生新数据,并把数据存放于Buffer缓冲区中,当数据存放结束则结束临界区;接着唤醒消费者线程;ci消费者访问临界区,得到权限访问缓冲区,如果缓冲区为空,没有可以处理的数据,则释放互斥锁且等待,直到缓冲区非空;当等到缓冲区非空时,跳出while循环;消费者获得数据,并根据所获得的数据按类别消费(当消费者获得的数据为大写字母时,则把大写字母转换成小写字母,并显示;当消费者获得的数据为小写字母时,则把小写字母转换成大写字母,并显示;当消费者获得的数据为字符0、1、2、……8、9时,把这些字符直接显示到屏幕;当消费者获得的数据为符号(+、-、*、\……)时,把这些符号打印成7行7列的菱形);处理完数据后,结束临界区;接着唤醒生产者线程。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值