SparkStreaming完整demo-累积个数(updateStateByKey)

以SparkStreaming + Tcp 实现

假定用户有某个周末网民网购停留时间的日志文本,基于某些业务要求,要求开发
Spark应用程序实现如下功能:

1、实时统计连续网购时间超过半个小时的女性网民信息。
2、周末两天的日志文件第一列为姓名,第二列为性别,第三列为本次停留时间,单

位为分钟,分隔符为“,”。

数据:

log1.txt:周六网民停留日志

LiuYang,female,20

YuanJing,male,10

GuoYijun,male,5

CaiXuyu,female,50

Liyuan,male,20

FangBo,female,50

LiuYang,female,20

YuanJing,male,10

GuoYijun,male,50

CaiXuyu,female,50

FangBo,female,60

log2.txt:周日网民停留日志

LiuYang,female,20

YuanJing,male,10

CaiXuyu,female,50

FangBo,female,50

GuoYijun,male,5

CaiXuyu,female,50

Liyuan,male,20

CaiXuyu,female,50

FangBo,female,50

LiuYang,female,20

YuanJing,male,10

FangBo,female,50

GuoYijun,male,50

CaiXuyu,female,50

FangBo,female,60

实现步骤

一 、pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.xu.sparktest1</groupId>
    <artifactId>sparktest1</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <spark.version>2.1.0</spark.version>
        <scala.version>2.11</scala.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
            <version>2.1.1</version>
        </dependency>
    </dependencies>

    <build>
        <sourceDirectory>src/main/scala</sourceDirectory>
        <testSourceDirectory>src/test/scala</testSourceDirectory>

        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.5.1</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>

            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.0</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfile</arg>
                                <arg>${project.build.directory}/.scala_dependencies</arg>
                            </args>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

</project>

二 、scala代码

package com.xu

import org.apache.spark.{HashPartitioner, SparkConf}
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object SparkStreamTest4 {
  def main(args: Array[String]): Unit = {

    val sparkConf=new SparkConf().setAppName("StatefulWordcount").setMaster("local[2]")

    val ssc=new StreamingContext(sparkConf,Seconds(5))
    ssc.sparkContext.setLogLevel("WARN")
    ssc.checkpoint(".")

    val lines: ReceiverInputDStream[String] =ssc.socketTextStream("node01",6789)
    val results = lines.flatMap(_.split(" ")).filter(_.contains("female"))
    //val results: DStream[(String, Int)] =lines.flatMap( _.split(" "))
      //.map((_,1))    //.reduceByKey(_+_)
    val femaleData: DStream[(String, Int)] = results.map { line =>
        val t = line.split(',')
        (t(0), t(2).toInt)
      }.reduceByKey(_ + _)
    //筛选出时间大于两个小时的女性网民信息,并输出
    val date = femaleData.updateStateByKey(updateFunction, new HashPartitioner(ssc.sparkContext.defaultParallelism), true).filter(line => line._2 > 120)
    date.print()
    ssc.start()
    ssc.awaitTermination()
  }

  val updateFunction = (iter: Iterator[(String, Seq[Int], Option[Int])]) => {
    iter.flatMap { case (x, y, z) => Some(y.sum + z.getOrElse(0)).map(v => (x, v)) }
  }
}

三 启动Tcp:

控制台执行:

nc -lk 6789

四 数据准备

将上述log进行压缩,并以空格进行进行分割,如下:

LiuYang,female,20 YuanJing,male,10 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60

LiuYang,female,20 YuanJing,male,10 CaiXuyu,female,50 FangBo,female,50 GuoYijun,male,5 CaiXuyu,female,50 Liyuan,male,20 CaiXuyu,female,50 FangBo,female,50 LiuYang,female,20 YuanJing,male,10 FangBo,female,50 GuoYijun,male,50 CaiXuyu,female,50 FangBo,female,60

五、测试

在Linux控制台,输入上述压缩的数据:

在这里插入图片描述

在这里插入图片描述

下一篇文章中,将Tcp换为kafka!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值