Max Sum Plus Plus点击打开链接
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 30636 Accepted Submission(s): 10811
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const int MAX=99999;
int main()
{
int n,m,Max,m1,a[MAX],b[MAX];
while(~scanf("%d %d",&m,&n))
{
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int t,j=1,v=1;
t=n/m;
while(j<m)
{
Max=m1=0;
for(int i=v;i<=t;i++)
{
m1+=a[i];
if(m1<0)
m1=0;
Max=max(Max,m1);
}
b[j++]=Max;
v=t+1;
t+=n/m;
}
//比如m=3,n=8 n/m=2 虽然n%m!=0,但是1 2 3 4 5 6 7 8在上边的while循环中竟然被分为了四段 哭晕
//第一次交没想到有n/m有余数的情况!!! 第二次就没有想到上面 7 8子段被重复计算且所分段数不符合要求的问题
//最后想了想 可以用j来控制所分段数,让前m-1段和第m段分开算
Max=m1=0;
for(int i=t-n/m+1;i<=n;i++)
{
m1+=a[i];
if(m1<0)
m1=0;
Max=max(Max,m1);
}
b[j++]=Max;
int sum=0;
for(int i=1;i<=m;i++)
sum+=b[i];
printf("%d\n",sum);
}
return 0;
}
第三次提交前,发现我们不能硬生生的把这一串数字分为题目要求的子段个数,也就是说比如在这样一组数据3 8 1 3 -2 4 3 1 -5 2 ,按照我的方法会把该序列分成1 3,-2 4,3 1 -5 2。这样结果是4+4+4=12,很明显不对,只好找其他方法。看了两个小时这个链接里的解释,点击打开链接,点击打开链接才懂了,顺便把推理过程也放在这,省的忘了。现在就可以学习正确方法了。
题意:任意给你n个整数,让你求这n个整数的m个不相交子段和的最大值。
这道题是利用dp的思想,先定义 两个数组num[ n ],dp[ m][ n ],dp[i][j]表示由前j个数 ,组成的i个子段(最后一个子段包括num[ j ])的和的最大值。另外num[ j ]是否是自己组成一个子段。状态转移方程:dp[ i ][ j ]=max(dp[ i ][ j-1 ],dp[ i-1 ][ t])+num[ j ],1<=t<=j-1。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAX=1e6+5;
int per_max[MAX],num[MAX];
int DP(int m,int n)//DP是一种利用数组做题的思想,并不一定非得定义一个二维DP数组
{
for(int i = 1 ;i <= m ;i ++)
{
int tmp=0;
for(int k = 1 ;k <= i ;k ++)
tmp += num[k];
per_max[n]=tmp;
for(int j = i + 1 ;j <= n ;j ++)
{
tmp = max (per_max[j-1],tmp)+num[j];//关键所在
per_max[j-1]=per_max[n];//这里赋给per_max[j-1],而不是per_max[j],就会把per_max[n]闲置出来留着优化
per_max[n]= max(tmp,per_max[n]);
}
}return per_max[n] ;
}
int main()
{
int m,n;
while(~scanf ("%d %d" ,&m ,&n))
{
for ( int i = 1 ;i <=n ;i++)
{
scanf("%d",&num[i]);
per_max[i]=0;
}printf("%d\n", DP(m,n));
}
return 0;
}
还有些地方理解的不够好,后面懂了再补充。