本文用pytorch实现了猴痘病的识别任务。
文章目录
前言
本文为🔗365天深度学习训练营 中的学习记录博客
原作者:K同学啊
一、导入相关库
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os, PIL, pathlib,random
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
二、导入数据
data_dir = './4-data/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("/")[-1] for path in data_paths]
classNames
运行结果如下图所示:
本文数据集的猴痘病共有两类,一类为Monkeypox,其它都归为一类,为Others。
自定义transforms方法。
total_datadir = './4-data'
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), #将输入图片resize成统一尺寸
# transforms.RandomHorizontalFlip(), #随机水平翻转
transforms.ToTensor(), #将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 使模型更容易收敛 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
total_data
具体的transforms的作用见深度学习笔记03,本文不再赘述。
关于class_to_idx的说明:
total_data.class_to_idx是一个存储了数据集类别和对应索引的字典。在ImageFolder数据加载器中,根据数据集文件夹的组织结构,每个文件夹代表一个类别,class_to_idx字典将每个类别名称映射为一个数字索引。数据集文件夹包含两个子文件夹,Monkeypox和Others,class_to_idx字典将返回以下的映射关系:{‘Monkeypox’: 0, ‘Others’: 1}。
三、划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
数据集一共有2142张照片。将训练集和测试集按照8:2的比例划分。
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
用DataLoader函数加载数据集。
可以查看输入图像和输出的shape
for x,y in test_dl:
print('Shape of X[N, C, H, W]:',x.shape)
print('Shape of y:',y.shape, y.dtype)
break
三、建立网络模型
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
model
网络结构如下图所示:
注:本模型仅供参考
四、训练模型
1.设置超参数
loss_fn = nn.CrossEntropyLoss()
learning_rate = 1e-4
opt = torch.optim.SGD(model.parameters(), lr=learning_rate)
2. 编写训练函数
def train(train_loader, model, loss_fn, optimizer):
size = len(train_loader.dataset)
num_batches = len(train_loader)
train_loss, train_acc = 0, 0
for x, y in train_loader:
x,y = x.to(device), y.to(device)
pred = model(x)
loss = loss_fn(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_loss, train_acc
3. 编写测试函数
def test(test_loader, model, loss_fn):
size = len(test_loader.dataset)
num_batches = len(test_loader)
test_loss, test_acc = 0, 0
with torch.no_grad():
for x, y in test_loader:
x, y = x.to(device), y.to(device)
pred = model(x)
loss = loss_fn(pred, y)
test_loss += loss.item()
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
4. 开始训练
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
训练结果如下图所示:
注:本文尝试了不同的学习率,不同的优化器,甚至还运用了VGG16模型,但是发现了一个邪门的问题:测试集的准确率特别低,而且还一直降低,训练loss一直在增加,但是测试集的准确率却在不断地上升,甚至最高达到了96%,但是其训练集准确率却非常的低。尝试了多种方法后,这个问题仍然存在,猜测有可能是数据集的问题。
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
可视化训练测试的损失和准确率可以看出来,训练准确率和训练损失非常反常。
五、预测
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
plt.imshow(test_img)
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output, 1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
unsqueeze(0)意为扩充img的batchsize维度,以便后续输入模型得到输出。
# 预测训练集中的某张照片
predict_one_image(image_path='./4-data/Monkeypox/M01_01_00.jpg',
model=model,
transform=train_transforms,
classes=classes)
输出结果为:
由于猴痘病图片可能会引起不适,因此不将其imshow,只输出它的预测类别。可以发现,预测正确。
六、保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
总结
本文尝试了不同的学习率,不同的优化器,调整了网络结构,甚至还运用了VGG16模型,但是发现了一个邪门的问题:测试集的准确率特别低,而且还一直降低,训练loss一直在增加,但是测试集的准确率却在不断地上升,甚至最高达到了96%,但是其训练集准确率却非常的低。尝试了多种方法后,这个问题仍然存在,猜测有可能是数据集的问题。后续会尝试设置动态学习率。