比较垃圾所以刷的尽是些水题
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can’t unlock any pighouse because he doesn’t have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Solution
首先我们想到把猪圈复制n遍然后建边。
最后在猪圈和人之间建边。
然而点太多Dinic跑不出来。
我们可以考虑缩掉一些点。
1)以后不向人连边的点就没必要复制了。
2)如果对于边c(u,v)=INF,那就可以把u,v给缩了
3)如果有些点他们的流量来源完全相同则可以缩掉。
4)如果有些点他们的流量流出完全相同则可以缩掉。
这样一通缩点以后我们可以惊奇地发现猪圈没了,只有人之间有边。
并且连边的规则是这样的:
对于一个人如果与他相连的猪圈没有被其他人连过则该人与src连一条容量为猪圈中猪的数量的边
不然就和上个连这个猪圈的人连一条容量为INF的边。
然后就可以过掉了。
Edelweiss神牛有一句很有意思的总结:
在面对网络流问题时,如果一时想不出很好的构图方法,不如先构造一个最直观,或者说最“硬来”的模型,然后再用合并节点和边的方式来简化这个模型。经过简化以后,好的构图思路就会涌现出来了。这是解决网络流问题的一个好方法。
[源代码]
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
const int M=2e4+5;
const int INF=1<<30;
struct Edge{int to,cap,nxt;}edge[M<<1];
int head[M],work[M],tot_edge,A[M],sink,src,last[M],dis[M],n,m;
inline void add_edge(int from,int to,int c){
edge[tot_edge]=(Edge){to,c,head[from]};
head[from]=tot_edge++;
edge[tot_edge]=(Edge){from,0,head[to]};
head[to]=tot_edge++;
}
bool mark[M];
inline int dfs(int v,int f){
if(v==sink)return f;
mark[v]=1;
for(int &i=work[v];~i;i=edge[i].nxt){
int to=edge[i].to;
if(!mark[to]&&dis[to]==dis[v]+1&&edge[i].cap){
int d=dfs(to,min(f,edge[i].cap));
if(d){
edge[i].cap-=d;
edge[i^1].cap+=d;
return d;
}
}
}
return 0;
}
queue<int>que;
inline bool bfs(){
for(int i=1;i<=n;++i)
dis[i]=-1;
que.push(src);
dis[src]=0;
for(;!que.empty();){
int v=que.front();que.pop();
for(int i=head[v];~i;i=edge[i].nxt){
int to=edge[i].to;
if(dis[to]==-1&&edge[i].cap){
dis[to]=dis[v]+1;
que.push(to);
}
}
}
return dis[sink]!=-1;
}
inline int Dinic(){
int res=0;
for(;bfs();){
for(int i=1;i<=n;++i)
work[i]=head[i];
for(;;){
for(int i=1;i<=n;++i)mark[i]=0;
int f=dfs(src,INF);
if(!f)break;
res+=f;
}
}
return res;
}
int main(){
cin>>m>>n;
src=n+1,sink=n+2;
for(int i=1;i<=m;++i)
scanf("%d",&A[i]),last[i]=src;
memset(head,-1,sizeof(head));
for(int i=1,k,s;i<=n;++i){
scanf("%d",&k);
for(int j=1,a;j<=k;++j){
scanf("%d",&a);
if(last[a]!=src)add_edge(last[a],i,INF);
else add_edge(last[a],i,A[a]);
last[a]=i;
}
scanf("%d",&s);
add_edge(i,sink,s);
}
n+=2;
cout<<Dinic()<<endl;
return 0;
}