华为OD机考2025B卷 - 仿LISP运算 (Java & Python& JS & C++ & C )

最新华为OD机试

真题目录:点击查看目录
华为OD面试真题精选:点击立即查看

2025华为od 机试2025B卷-华为机考OD2025年B卷

题目描述

LISP 语言唯一的语法就是括号要配对。

形如 (OP P1 P2 …),括号内元素由单个空格分割。

其中第一个元素 OP 为操作符,后续元素均为其参数,参数个数取决于操作符类型。

注意:

参数 P1, P2 也有可能是另外一个嵌套的 (OP P1 P2 …) ,当前 OP 类型为 add / sub / mul / div(全小写),分别代表整数的加减乘除法,简单起见,所有 OP 参数个数均为 2 。

举例:

  • 输入:(mul 3 -7)输出:-21
  • 输入:(add 1 2) 输出:3
  • 输入:(sub (mul 2 4) (div 9 3)) 输出 :5
  • 输入:(div 1 0) 输出:error

题目涉及数字均为整数,可能为负;

不考虑 32 位溢出翻转,计算过程中也不会发生 32 位溢出翻转,

除零错误时,输出 “error”,

除法遇除不尽,向下取整,即 3/2 = 1

输入描述

输入为长度不超过512的字符串,用例保证了无语法错误

输出描述

输出计算结果或者“error”

示例1

输入

(div 12 (sub 45 45))

输出

error

说明

示例2

输入

(add 1 (div -7 3))

输出

-2

说明

− 7 3 + 1 = − 4 3 -\frac{7}{3} + 1 = -\frac{4}{3}

### 华为OD机考 2025B 数字游戏 Java 编程题 解决方案 在华为OD机考 2025B中,数字游戏相关的编程题目通常涉及算法设计、数据结构应用以及逻辑推理。以下是一个可能的数字游戏问题及其解决方案。 #### 问题描述 假设有一个数字游戏,玩家需要从一个整数数组中选择若干个数字,使得这些数字的和等于目标值 `target`。要求输出所有可能的组合。如果不存在这样的组合,则返回空列表。 **输入:** - 一个整数数组 `nums`。 - 一个整数目标值 `target`。 **输出:** - 所有可能的组合列表,每个组合是一个子数组。 **示例:** ```plaintext 输入: nums = [2, 3, 6, 7], target = 7 输出: [[7], [2, 2, 3]] ``` #### 解决方案 以下是使用回溯法(Backtracking)解决该问题的 Java 实现: ```java import java.util.ArrayList; import java.util.List; public class NumberGame { public static List<List<Integer>> combinationSum(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<>(); if (candidates == null || candidates.length == 0) return result; // 排序以优化剪枝 java.util.Arrays.sort(candidates); backtrack(result, new ArrayList<>(), candidates, target, 0); return result; } private static void backtrack(List<List<Integer>> result, List<Integer> tempList, int[] candidates, int remain, int start) { if (remain < 0) return; // 超过目标值,直接返回 if (remain == 0) { // 找到一个组合 result.add(new ArrayList<>(tempList)); return; } for (int i = start; i < candidates.length; i++) { tempList.add(candidates[i]); backtrack(result, tempList, candidates, remain - candidates[i], i); // 不移动起点,允许重复使用 tempList.remove(tempList.size() - 1); // 回溯 } } public static void main(String[] args) { int[] nums = {2, 3, 6, 7}; int target = 7; List<List<Integer>> result = combinationSum(nums, target); System.out.println("结果: " + result); } } ``` #### 代码说明 1. **输入排序**:为了优化剪枝操作,首先对输入数组进行排序[^1]。 2. **回溯函数**:通过递归实现回溯,每次尝将当前数字加入临时列表,并递归调用自身以寻找剩余目标值的组合。 3. **剪枝条件**:当剩余目标值小于 0 时,停止进一步递归;当剩余目标值等于 0 时,保存当前组合并返回。 4. **重复使用元素**:允许同一个数字被多次使用,因此递归调用时传入的起点索引不增加。 #### 时间复杂度与空间复杂度 - **时间复杂度**:最坏情况下为 \(O(2^n)\),其中 \(n\) 是数组长度,因为每个数字都有选或不选两种状态。 - **空间复杂度**:取决于递归深度,最坏情况下为 \(O(n)\)[^2]。 #### 测结果 运行上述代码,对于输入 `nums = [2, 3, 6, 7]` 和 `target = 7`,输出结果为: ```plaintext 结果: [[2, 2, 3], [7]] ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法大师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值