冒泡算法及其改进算法

冒泡算法介绍

     冒泡算法的原理是:根据轻气泡不能在重气泡之下的原则,按一定顺序扫描数组:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。到此排序结束。
比如对{6,2,3,1,7}进行冒泡排序(从小到大)
第一次遍历结束后,结果为:1 6 3 2 7
第二次遍历结束后,结果为:1 2 6 3 7
第三次遍历结束后,结果为:1 2 3 6 7
第n此遍历结束后,数组的前n个数字组成的子序列是有序的。
c++算法描述为:

int SortMaopao(int a[], int nlength)
{
	int nForeachCount = 0;   //遍历的次数

	if (nlength <= 0)
		return nForeachCount;

	for (int i = 0; i < nlength - 1; i++)
	{
		for (int j = 0; j < nlength - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				int tmp = a[j];
				a[j] = a[j + 1];
				a[j + 1] = tmp;
			}
			nForeachCount++;
		}
	}
	return nForeachCount;
}

改进算法1

     很明显,冒泡算法需要进行内外各循环一次,时间复杂度为O(n^2),对于部分有序的数组而言,我们是可以进行进一步优化的,从而减少遍历次数。当内循环遍历之后,没有进行过任何一次数据交换,那么就认为当前排序已经结束了。代码如下:

int SortMaopao1(int a[], int nlength)
{
	int nForeachCount = 0;   //遍历的次数

	if (nlength <= 0)
		return nForeachCount;

	for (int i = 0; i < nlength - 1; i++)
	{
		int flag = 0;
		for (int j = 0; j < nlength - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				int tmp = a[j];
				a[j] = a[j + 1];
				a[j + 1] = tmp;
				flag = 1;
			}
			nForeachCount++;
		}

		if (flag == 0)  
		{
			break;
		}
	}
	return nForeachCount;
}

改进算法2

     看了改进算法1的代码,大家应该能发现,这种处理只针对后部分区域全部有序才有效(这是从前往后遍历,如果是从后往前遍历,那么就是前部分区域全部有序才有效),那么如果我们的数组中的所有元素只是局部有序呢,比如还是从小到大排序,对{6,2,1,3,7}进行冒泡排序,第一次外循环的时候,6与2比较,6>2,这个时候再多加一次比较,如果2>1的,那么直接将6与1进行换位,这样就省了一次遍历。代码如下:

int SortMaopao2(int a[], int nlength)
{
	int nForeachCount = 0;   //遍历的次数

	if (nlength <= 0)
		return nForeachCount;

	for (int i = 0; i < nlength - 1; i++)
	{
		int flag = 0;
		for (int j = 0; j < nlength - 1 - i; j++)
		{
			if (a[j] > a[j + 1])
			{
				if (j + 2 < nlength && a[j+1] > a[j+2])  //做二阶比较
				{
					int nTemp = a[j];
					a[j] = a[j + 2];
					a[j + 2] = nTemp;
					j++;
				}
				else
				{
					int tmp = a[j];
					a[j] = a[j + 1];
					a[j + 1] = tmp;
				}
				flag = 1;
			}
			nForeachCount++;
		}

		if (flag == 0)  
		{
			break;
		}
	}
	return nForeachCount;
}

结果比较

     用三种算法对{ 6, 5, 7, 8, 9, 10 }数组进行排序,得到的nForeachCount(比较次数)分别为:
在这里插入图片描述
     对{ 6, 7, 5, 4, 9, 10 }数组进行排序,得到的nForeachCount(比较次数)分别为:
在这里插入图片描述
     对{ 6, 2, 3, 1, 7 }数组进行排序,得到的nForeachCount(比较次数)分别为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simple Simple

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值