The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the "root." Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that "all houses in this place forms a binary tree". It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
3 / \ 2 3 \ \ 3 1
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7.
给定一棵二叉树,求最大和,相邻节点只能最多选其一。
对于每个子节点,以该节点为根root,则可以得到的最大和为:加上该节点的值res[1]或不加上该节点的值res[0].
当加上该节点,则相邻的左右子节点都不能加。要是不加上该节点,则相邻的左右子节点可加可不加。
故而res[0] = max(left.res[0], left.res[1]) + max(right.res[0], right.res[1]);
res[1] = root->val + left.res[0] + right.res[0];
class Solution { public: vector<int> helper(TreeNode* root) { vector<int> res(2, 0); if (root) { vector<int> l = helper(root->left); vector<int> r = helper(root->right); res[0] = max(l[0], l[1]) + max(r[0], r[1]); res[1] = root->val + l[0] + r[0]; } return res; } int rob(TreeNode* root) { vector<int> v = helper(root); return max(v[0], v[1]); } };
本文探讨了一种基于二叉树结构的算法问题,即在不触动报警机制的情况下,如何计算从二叉树中能获得的最大收益。通过递归地考虑每个节点作为根的子树,算法实现了对最大和的选择,确保了相邻节点最多只选其一,从而避免了同时选择直接相连的两个节点。文章详细解析了算法的实现过程,并提供了具体的代码示例。
429

被折叠的 条评论
为什么被折叠?



