一文搞懂AI大模型Attention机制:零基础入门到实战精通,一篇顶十篇!

本文详细介绍了AI大模型中的Attention注意力机制,强调其作为Transformer最核心部分的重要性。文章通过解释Attention机制的目的、工作流程(Q、K、V向量生成、点积计算、Softmax归一化、加权求和)和实际应用案例,展示了如何帮助模型理解上下文中的语义关系。文章建议初学者通过3Blue1Brown的可视化动画建立直观认知,以更好地掌握这一关键技术。


****如果学习完上面两篇文章,你还没有建立起Transformer和Self- Attention的直观认知,强烈推荐先通过3Blue1Brown(3B1B)的可视化动画来学习。

3B1B用精美的动画将抽象的数学概念具象化,能帮助你更快地理解Transformer和Self-Attention的工作原理。

通过3B1B的动画学习,我们了解到Transformer的数据流转可以概括为四个阶段:Embedding(嵌入)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(从模型表示到最终输出)。

在这四个阶段中,Attention(注意力机制)无疑是最核心、最具革命性的部分。为什么Attention机制如此重要?因为语言的理解从来不是孤立的——同一个词在不同语境下可能有完全不同的含义。比如"苹果",在"我买了一个苹果"和"苹果发布了新款iPhone"中,指代的对象截然不同。

Attention机制正是通过分析词与词之间的关系,让模型能够像人类一样根据上下文准确理解每个词的真实含义。

下面对Attention(注意力机制)进行详细介绍:

Attention(注意力机制)的目的:

  • 在自然语言处理(NLP)中,嵌入向量(Embedding Vector)是单词或文本片段的数值表示,它们捕捉了这些单词或文本片段的语义信息。
  • 嵌入向量作为输入传递给Transformer的Attention模块时,Attention模块会通过Q、K、V计算注意力权重,从而分析这些向量,使得Embedding向量间能够相互"交流"并根据彼此信息更新自身的值。
  • Attention模块的主要作用是确定在给定上下文中哪些嵌入向量与当前任务最相关,并据此更新或调整这些嵌入向量的表示。
  • 这种“相关性”通常基于单词之间的语义关系,即它们如何相互关联以形成有意义的句子或段落。

Attention(注意力机制)的工作流程

  • 生成Q、K、V向量:对于输入序列中的每个单词,都会生成对应的Query(查询)、Key(键)和Value(值)向量。这些向量通常是通过将单词的嵌入向量(Embedding Vector)输入到一个线性变换层得到的。
  • 计算Q、K的点积(注意力分数):Attention机制会计算Query向量与序列中所有单词的Key向量之间的点积(或其他相似度度量),得到一个分数。这个分数反映了Query向量与每个Key向量之间的相似度,即每个单词与当前位置单词的关联程度。
  • Softmax函数归一化(注意力权重):这些分数会经过一个Softmax函数进行归一化,得到每个单词的注意力权重。这些权重表示了在理解当前单词时,应该给予序列中其他单词多大的关注。
  • 注意力权重加权求和(加权和向量):这些注意力权重与对应的Value向量进行加权求和,得到一个加权和向量。这个加权和向量会被用作当前单词的新表示,包含了更丰富的上下文信息。
  • 在处理每个单词时,模型都能够考虑到整个输入序列的信息,并根据单词之间的语义关系来更新单词的表示。这使得Transformer模型能够能够更准确地理解单词在当前上下文中的含义,进而解决上下文依赖问题。

Attention(注意力机制)的实际案例

  • 以单词“model”为例,在“machine learning model”(机器学习模型)和“fashion model”(时尚模特)这两个不同的上下文中,它的含义是不同的。
  • 当Attention模块处理包含“model”的句子时,它会查看句子中的其他单词(如“machine learning”或“fashion”),并确定这些单词与“model”之间的语义关系。
  • Attention模块会计算一个权重,该权重表示其他单词对理解“model”在当前上下文中的含义的重要性。这些权重被用来更新“model”的嵌入向量,以便更好地反映其在当前上下文中的意义。
  • Attention模块的作用就是确定上下文中哪些词之间有语义关系,以及如何准确地理解这些含义,更新相应的向量。

日拱一卒,让大脑不断构建深度学习和大模型的神经网络连接。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

优快云粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

优快云粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值