这是 自动评估基准 系列文章的第一篇,敬请关注系列文章:
基础概念
设计你的自动评估任务
一些评估测试集
技巧与提示
_注:本文内容与我写的通用评估博客存在部分重叠_https://hf.co/blog/clefourrier/llm-evaluation
什么是自动评估基准?
自动化基准测试通常按照以下方式工作:你希望了解你的模型在某些方面的表现。这些“某些方面”可以是一个明确定义的具体任务,例如“我的模型在垃圾邮件分类中的表现如何?”,也可以是一个更抽象和通用的能力,例如“我的模型的数学能力有多强?”。
基于此,你可以通过以下方式构建评估:
数据集:数据集由多个样本组成。这些样本包含模型的输入,有时还包括一个参考答案 (称为“gold”) ,用于与模型的输出进行比较。样本的设计通常是为了尽量模拟你想测试模型的场景。例如,如果你在研究电子邮件分类,你可以创建一个包含垃圾邮件和非垃圾邮件的样本数据集,并尝试加入一些具有挑战性的边界案例等。
评估指标:评估指标用于对模型进行评分。例如:你的模型对垃圾邮件的分类准确度如何?正确分类的样本得分为 1,错误分类的得分为 0。评估指标使用模型的输出来进行评分。在大型语言模型 (LLMs) 的情况下,人们主要关注两种输出:
模型根据输入生成的文本 (生成式评估,generative evaluation) 提供给模型的一个或多个序列的对数概率 (多项选择评估,有时称为 MCQA,或者困惑度评估 perplexity evaluations) 有关更多信息,请查看模型推理与评估页面。
模型推理与评估页面https://hf.co/docs
在模型没有见过 (即未出现在训练集) 的数据上进行评估会更有意义,得出的模型 泛化性 结论才更准确。比如在只见过假冒银行垃圾邮件的模型上测试其能否正确分类与 “健康” 相关的垃圾邮件。
注:模型只能在训练数据上预测效果良好 (没有隐式地学习到更高层次的通用范式) 的现象叫做 过拟合。这就类似于一个学生死记硬背了考试题目,却没有理解背后的知识点。所以只用训练集中的数据测试评估 LLM 得到的分数指标实际上是模型不具备的能力。
自动评估基准的优劣势
优势:
-
一致性和可重复性:在同一个模型上运行相同的自动评估基准 10 次,测试结果也是相同的 (除非受到硬件或模型自身随机性的影响)。所以相同任务下,多个模型的测试排名结果是公正的。
-
低成本规模效益:目前自动评估基准是评估模型成本最低的方式之一。
-
易于理解:大部分自动化方式的评价指标理解起来都非常容易。例如:精确匹配可以理解为生成文本跟参考文本是否完全一致;准确率可以理解为做出的选项有多大程度是正确的 (不过对于像
BLEU
或ROUGE
这种评价方式,理解难度会稍微高一些)。 -
高质量测试集:许多自动评估基准的测试集都来自专家级生成数据集或现有的高质量数据集 (如 MMLU 或 MATH)。当然也不是说这些测试集就完美无瑕,例如 MMLU 就被发现存在一些解析错误以及事实谬误,所以后来出现了一批改进的数据集,如 MMLU-Pro 和 MMLU-Redux。
劣势:
-
复杂任务难以保证效果:自动评估基准通常在测试效果容易定义和评估的任务上表现良好 (如分类任务)。一旦任务比较复杂而且难以拆分为目标明确的子任务时,表现可能不及预期。_例如:测试模型的 “数学能力” 任务。具体是算术、还是逻辑、亦或是推演新数学概念的能力?_所以出现了一些无需拆分为子任务的 通用性 评估方式,由此评估出的模型整体表现就是评估目标的 优良代理。
-
数据污染:网络上的数据一旦以纯文本的形式公开,那么由于数据爬虫,这些数据总归会出现在模型训练集中。所以在评估时很难保证模型真的没有见过测试集。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
优快云粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传优快云,朋友们如果需要可以扫描下方二维码&点击下方优快云官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉优快云大礼包:《最新AI大模型学习资源包》免费分享 👈👈