ChatGLM实战:基于LangChain构建自己的私有知识库

LangChain是什么

LangChain是一个用于构建基于大型语言模型(LLM)的应用程序的库。它为开发者提供了一种便捷的方式,可以将LLM与其他计算或知识源结合起来,从而创造出更加智能和强大的应用程序。

LangChain的目标是帮助开发者充分发挥大型语言模型的优势,使其在各种领域,如自然语言处理、问答系统、文本生成等方面得到更广泛的应用。

通过LangChain,开发者可以更高效地利用大型语言模型的能力,为用户提供更优质的智能化体验。例如,开发者可以使用LangChain将大型语言模型与电子商务网站集成,导入人工客服的对话问答库和商品介绍文档,为用户提供智能的商品推荐和个性化购物建议。

下载源码

既然之前能够运行ChatGLM-6B的模型,那么我们仍然基于ChatGLM模型来搭建属于自己的本地知识库。先下载langchain-ChatGLM源码。

root@VM-0-17-ubuntu:~# git clone https://github.com/chatchat-space/langchain-ChatGLM.git

环境准备

之前已经成功运行了ChatGLM模型,那么,还是基于python3.8的版本来构建自己的langchain,创建python虚拟环境, 并激活:

root@VM-0-17-ubuntu:~# conda create -n langchain python=3.8
root@VM-0-17-ubuntu:~# conda activate langchain

在虚拟python环境中,更新py库,并下载langchain的依赖:

root@VM-0-17-ubuntu:~# pip3 install --upgrade pip
# 项目中 pdf 加载由先前的 detectron2 替换为使用 paddleocr,如果之前有安装过 detectron2 需要先完成卸载避免引发 tools 冲突
root@VM-0-17-ubuntu:~# pip uninstall detectron2
# 检查paddleocr依赖,linux环境下paddleocr依赖libX11,libXext
root@VM-0-17-ubuntu:~# apt-get install libx11-dev libxext-dev libxtst-dev libxrender-dev libxmu-dev libxmuu-dev

进入langchain工程,下载依赖项:

root@VM-0-17-ubuntu:~# cd langchain-ChatGLM
root@VM-0-17-ubuntu:langchain-ChatGLM# pip install -r requirements.txt

检查paddleocr是否成功,首次运行会下载约18M模型到~/.paddleocr

root@VM-0-17-ubuntu:langchain-ChatGLM# python loader/image_loader.py
root@VM-0-17-ubuntu:langchain-ChatGLM# du -sh ~/.paddleocr/
# 输出 18M     /root/.paddleocr/ 说明验证成功

llama-cpp模型调用的说明

我们虽然没有指定使用llama-cpp的模型,但langchain依赖llama-cpp-python的包,因此需要安装llama-cpp-python。

root@VM-0-17-ubuntu:langchain-ChatGLM# pip install llama-cpp-python

注意,这里依赖gcc的版本那是8.4及以上,系统自带的gcc是7.5版本,因此会报错。需要先升级

更新软件包列表:

root@VM-0-17-ubuntu:langchain-ChatGLM# apt update -y
root@VM-0-17-ubuntu:langchain-ChatGLM# apt install gcc-8 g++-8

更新系统的默认gcc版本为8.4:

root@VM-0-17-ubuntu:langchain-ChatGLM# sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 100
root@VM-0-17-ubuntu:langchain-ChatGLM# sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 100

验证gcc版本是否升级成功:

root@VM-0-17-ubuntu:langchain-ChatGLM# gcc --version

在这里插入图片描述

模型选择

检查langchain-ChatGLM默认使用的模型,打开configs/model_config.py ,可以看到支持的模型列表:

root@VM-0-17-ubuntu:langchain-ChatGLM# vim configs/model_config.py
llm_model_dict = { 
    ......
    "ChatGLM-6B": {
        "name": "ChatGLM-6B",
        "pretrained_model_name": "/root/prj/ChatGLM-6B/THUDM/ChatGLM-6B",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },  
   ......
    "ChatGLM2-6b-32k": {
        "name": "ChatGLM2-6b-32k",
        "pretrained_model_name": "/root/prj/ChatGLM-6B/THUDM/ChatGLM2-6b-32k",
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },  
    ......
}
LLM_MODEL = "ChatGLM2-6b-32k" # 默认模型

从上述代码中,我们可以看到,既支持了ChatGLM-6B,还支持了更高能力的ChatGLM2-6b-32k。ChatGLM2-6b-32k是在ChatGLM2-6B的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多32K长度的上下文。既然有更好的模型,而且默认还是这个,为啥不用最新的呢(其实是ChatGLM-6B尝试失败了,出现了我无法解决的问题,大概率是版本太老,资源丢失了).

模型下载

ChatGLM-6B-32k下载

在https://huggingface.co/搜索ChatGLM-6B-32k,链接为:https://huggingface.co/THUDM/ChatGLM2-6b-32k

在这里插入图片描述

从截图中可以看出,ChatGLM-6B-32k的模型大概有15G左右,就靠我这薅的5M带宽的服务器,还得科学上网才能访问https://huggingface.co,速度可以想像会有多慢,说不定还会超时。不过有钱的小伙伴可以直接购买国外的gpu服务器来操作langchain,只需执行以下操作即可下载ChatGLM-6B-32k模型。

root@VM-0-17-ubuntu:langchain-ChatGLM# git lfs clone https://huggingface.co/THUDM/ChatGLM2-6b-32k

如果没钱的小伙伴,可以去我的百度云盘下载,这个就不保证实时更新了哦。

链接:https://pan.baidu.com/s/1FWH986DG7ZzOsU1vyqTW2g 
提取码:1kou

汉语长文本下载

ChatGLM-6B-32k还依赖汉语长文本的模型,否则运行langchain会重新去下载text2vec-large-chinese的模型文件,我们可以提前下载。在huggingface搜索,得到链接https://huggingface.co/GanymedeNil/text2vec-large-chinese/tree/main。

在这里插入图片描述

配置

模型文件下载好后,需要对应自己的模型路径进行配置,打开configs/model_config.py如下,根据注释进行配置:

......
embedding_model_dict = { 
    "ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
    "ernie-base": "nghuyong/ernie-3.0-base-zh",
    "text2vec-base": "shibing624/text2vec-base-chinese",
    #"text2vec": "GanymedeNil/text2vec-large-chinese",
    "text2vec": "/root/prj/ChatGLM-6B/THUDM/text2vec-large-chinese",                   # 下载好的text2vec-large-chinese路径
    "text2vec-base-multilingual": "shibing624/text2vec-base-multilingual",
    "text2vec-base-chinese-sentence": "shibing624/text2vec-base-chinese-sentence",
    "text2vec-base-chinese-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
    "m3e-small": "moka-ai/m3e-small",
    "m3e-base": "moka-ai/m3e-base",
}
......
llm_model_dict = { 
    ......
    "ChatGLM2-6b-32k": {
        "name": "ChatGLM2-6b-32k",
        "pretrained_model_name": "/root/prj/ChatGLM-6B/THUDM/ChatGLM2-6b-32k",         # 下载好的ChatGLM2-6b-32k路径
        "local_model_path": None,
        "provides": "ChatGLMLLMChain"
    },
    ......
}

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值