Hadoop The Definitive Guide 4th Editon

本文深入探讨了Hadoop MapReduce的基本原理与操作流程,包括如何将输入数据划分成固定大小的切片,以及如何通过map和reduce任务进行数据处理。此外,还介绍了如何通过设置combiner函数来减少map与reduce之间的数据传输。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


 

Hadoop The Definitive Guide 4th Editon

===================

I.[Hadoop Fundamentals]

---------------

1.Meet Hadoop

2.MapReduce

—————————


Hadoop provides its own set of basic types that are optimized for network serialization 


Hadoop divides the input to a MapReduce job into fixed-size pieces called input splits, or just splits. Hadoop creates one map task for each split, which runs the user-defined map function for each record in the split. 


To minimize the data transferred between map and reduce tasks. Hadoop allows the user to specify a combiner function to be run on the map output, and the combiner function’s output forms the input to the reduce function. 





Sample 问题:

1.脚本获取NCDC数据


2.hadoop获取


调用load_ncds.sh 获取NCDC数据 时 出现PipeMapRed.waitOutputThreads(): subprocess failed with code 127,错误码 参考 http://blog.youkuaiyun.com/oDaiLiDong/article/details/46803603

增加对was的支持,由于找不到aws的 accesskey ,此方法暂未解决。

For some reason, the jar hadoop-aws-[version].jar which contains the implementation to NativeS3FileSystem is not present in the classpath of hadoop by default in the version 2.6 & 2.7. So, try and add it to the classpath by adding the following line in hadoop-env.sh which is located in $HADOOP_HOME/etc/hadoop/ hadoop-env.sh:

export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HADOOP_HOME/share/hadoop/tools/lib/*

Assuming you are using Apache Hadoop 2.6 or 2.7


  http://stackoverflow.com/questions/28029134/how-can-i-access-s3-s3n-from-a-local-hadoop-2-6-installation


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值