近期开始接触HEVC,看了一些综述性的文章后开始看平台,可总感觉效果不佳,所以打算把每天看的东西都写一下,巩固巩固。首先是讲一下initAdiPattern这个函数,在看了hevc_cjl的博客: http://blog.youkuaiyun.com/hevc_cjl/article/details/8184276?reload 之后,受益良多。
首先分析下这个函数的用途:这个函数位于帧内预测的亮度预测estIntraPredQT中,主要是用于初始化帧内模式。
细化其功能:(1)检测当前的PU相邻点的可用性(2)参考样点的替换 (3)参考样点的平滑滤波
通过下面这幅图能很好地理解代码的信息。如:
// ----- 先进行样点值拷贝
Int l = 0;
// left border from bottom to top【左下->左上,滤波前参考样点值拷贝】
for (i = 0; i < uiCuHeight2; i++)
{
piFilterBuf[l++] = piAdiTemp[uiWidth * (uiCuHeight2 - i)];
}
// top left corner
piFilterBuf[l++] = piAdiTemp[0]; //【左上角点, 拷贝】
// above border from left to right
for (i=0; i < uiCuWidth2; i++) // 【上->右上, 拷贝】
{
piFilterBuf[l++] = piAdiTemp[1 + i]; //l此时初始为uiCuHeight2+1
} 以上代码为样本点信息拷贝过程,拷贝的过程是自左下而上,过AboveLeft而向右的过程
Void TComPattern::initAdiPattern( TComDataCU* pcCU, UInt uiZorderIdxInPart, UInt uiPartDepth, Int* piAdiBuf, Int iOrgBufStride, Int iOrgBufHeight, Bool& bAbove, Bool& bLeft, Bool bLMmode )
{
Pel* piRoiOrigin;//piRoiOrgin指向重建Yuv图像对应于当前PU所在位置的首地址
Int* piAdiTemp; //
UInt uiCuWidth = pcCU->getWidth(0) >> uiPartDepth; //CU宽
UInt uiCuHeight = pcCU->getHeight(0)>> uiPartDepth; //CU高
UInt uiCuWidth2 = uiCuWidth<<1;// uiCuWidth*2
UInt uiCuHeight2 = uiCuHeight<<1;
UInt uiWidth;
UInt uiHeight;
Int iPicStride = pcCU->getPic()->getStride(); //图像跨度(原图像宽度 + 两边扩充的参考像素点)
Int iUnitSize = 0;
Int iNumUnitsInCu = 0;
Int iTotalUnits = 0;
Bool bNeighborFlags[4 * MAX_NUM_SPU_W + 1]; //!< 用于存放4个方向上的相邻样点值的【可用性】,4*32+1
Int iNumIntraNeighbor = 0; ////!< 给可用邻块进行计数
UInt uiPartIdxLT, uiPartIdxRT, uiPartIdxLB;
////! 获取当前PU左上角LT,右上角RT以及左下角LB 以4x4块为单位的Z-order(Zscan)
pcCU->deriveLeftRightTopIdxAdi( uiPartIdxLT, uiPartIdxRT, uiZorderIdxInPart, uiPartDepth );
pcCU->deriveLeftBottomIdxAdi ( uiPartIdxLB, uiZorderIdxInPart, uiPartDepth );
iUnitSize = g_uiMaxCUWidth >> g_uiMaxCUDepth; // 4
iNumUnitsInCu = uiCuWidth / iUnitSize; // 当前CU的宽/4 = 宽方向上,iUnitSize的个数
iTotalUnits = (iNumUnitsInCu << 2) + 1; //(iNumUnitsInCu*4) + 1
// (扫描顺序是从左下到左上,再从左上到右上)
bNeighborFlags[iNumUnitsInCu*2] = isAboveLeftAvailable( pcCU, uiPartIdxLT );
iNumIntraNeighbor += (Int)(bNeighborFlags[iNumUnitsInCu*2]);
iNumIntraNeighbor += isAboveAvailable ( pcCU, uiPartIdxLT, uiPartIdxRT, bNeighborFlags+(iNumUnitsInCu*2)+1 );
iNumIntraNeighbor += isAboveRightAvailable( pcCU, uiPartIdxLT, uiPartIdxRT, bNeighborFlags+(iNumUnitsInCu*3)+1 );
iNumIntraNeighbor += isLeftAvailable ( pcCU, uiPartIdxLT, uiPartIdxLB, bNeighborFlags+(iNumUnitsInCu*2)-1 );
iNumIntraNeighbor += isBelowLeftAvailable ( pcCU, uiPartIdxLT, uiPartIdxLB, bNeighborFlags+ iNumUnitsInCu -1 );
bAbove = true; //之前定义为FALSE
bLeft = true; //同上
uiWidth=uiCuWidth2+1;
uiHeight=uiCuHeight2+1;
if (((uiWidth<<2)>iOrgBufStride)||((uiHeight<<2)>iOrgBufHeight)) //判定范围
{
return;
}
//! piRoiOrigin指向当前PU左上角
piRoiOrigin = pcCU->getPic()->getPicYuvRec()->getLumaAddr( pcCU->getAddr(), pcCU->getZorderIdxInCU()+uiZorderIdxInPart );
piAdiTemp = piAdiBuf;
// 参考样点的替换(填补)过程
fillReferenceSamples (g_bitDepthY, piRoiOrigin, piAdiTemp, bNeighborFlags, iNumIntraNeighbor, iUnitSize, iNumUnitsInCu, iTotalUnits, uiCuWidth, uiCuHeight, uiWidth, uiHeight, iPicStride, bLMmode);// ****************************************************
//! 下面所进行的工作主要是对参考样点进行3抽头的滤波。
// piAdiBuf指向滤波前的参考样点的首地址,在滤波前,先将所有参考样点拷贝到piFilterBuf指向的区域,
//! 经滤波后的样点值保存在piFilterBufN指向的区域,最终将滤波后的样点值拷贝到piFilterBuf1。
// 值得一提的是,最终的结果是,piAdiBuf指向的区域是未经滤波的样点值,而piFilterBuf1指向的区域是经过
//! 滤波的样点值,两者的地址相差uiWH = uiWidth * uiHeight = (uiCuWidth2 + 1) * (uiCuHeight2 + 1),这就解释了在进行
//! 真正的帧内预测时,在需要滤波时,指向piAdiBuf的指针需要加上uiWH的偏移量。
Int i;
// generate filtered intra prediction samples
Int iBufSize = uiCuHeight2 + uiCuWidth2 + 1; //结合图中信息比较
UInt uiWH = uiWidth * uiHeight; // number of elements in one buffer
Int* piFilteredBuf1 = piAdiBuf + uiWH; // 1. filter buffer
Int* piFilteredBuf2 = piFilteredBuf1 + uiWH; // 2. filter buffer
Int* piFilterBuf = piFilteredBuf2 + uiWH; // buffer for 2. filtering (sequential)
//piFilterBufN 存放的是参考样点经3抽头滤波后的值
Int* piFilterBufN = piFilterBuf + iBufSize; // buffer for 1. filtering (sequential)
// ----- 先进行样点值拷贝
Int l = 0;
// left border from bottom to top【左下->左上,滤波前参考样点值拷贝】
for (i = 0; i < uiCuHeight2; i++)
{
piFilterBuf[l++] = piAdiTemp[uiWidth * (uiCuHeight2 - i)];
}
// top left corner
piFilterBuf[l++] = piAdiTemp[0]; //【左上角点, 拷贝】
// above border from left to right
for (i=0; i < uiCuWidth2; i++) // 【上->右上, 拷贝】
{
piFilterBuf[l++] = piAdiTemp[1 + i];
}
//对32*32的块进行 StrongIntraSmoothing
if (pcCU->getSlice()->getSPS()->getUseStrongIntraSmoothing()) //cfg里面设置
{
Int blkSize = 32;
Int bottomLeft = piFilterBuf[0];
Int topLeft = piFilterBuf[uiCuHeight2];
Int topRight = piFilterBuf[iBufSize-1];
Int threshold = 1 << (g_bitDepthY - 5);//8
Bool bilinearLeft = abs(bottomLeft+topLeft-2*piFilterBuf[uiCuHeight]) < threshold;
Bool bilinearAbove = abs(topLeft+topRight-2*piFilterBuf[uiCuHeight2+uiCuHeight]) < threshold;
if (uiCuWidth>=blkSize && (bilinearLeft && bilinearAbove))
{
Int shift = g_aucConvertToBit[uiCuWidth] + 3; // log2(uiCuHeight2) =7
piFilterBufN[0] = piFilterBuf[0];
piFilterBufN[uiCuHeight2] = piFilterBuf[uiCuHeight2];
piFilterBufN[iBufSize - 1] = piFilterBuf[iBufSize - 1];
for (i = 1; i < uiCuHeight2; i++)
{
piFilterBufN[i] = ((uiCuHeight2-i)*bottomLeft + i*topLeft + uiCuHeight) >> shift;
}
for (i = 1; i < uiCuWidth2; i++)
{
piFilterBufN[uiCuHeight2 + i] = ((uiCuWidth2-i)*topLeft + i*topRight + uiCuWidth) >> shift;
}
}
else
{
// 1. filtering with [1 2 1]
piFilterBufN[0] = piFilterBuf[0];
piFilterBufN[iBufSize - 1] = piFilterBuf[iBufSize - 1];
for (i = 1; i < iBufSize - 1; i++)
{
piFilterBufN[i] = (piFilterBuf[i - 1] + 2 * piFilterBuf[i]+piFilterBuf[i + 1] + 2) >> 2; // 最后 +2是为了四舍五入取整
}
}
}
else
{
// 1. filtering with [1 2 1]
piFilterBufN[0] = piFilterBuf[0];
piFilterBufN[iBufSize - 1] = piFilterBuf[iBufSize - 1];
for (i = 1; i < iBufSize - 1; i++)
{
piFilterBufN[i] = (piFilterBuf[i - 1] + 2 * piFilterBuf[i]+piFilterBuf[i + 1] + 2) >> 2;
}
}
// fill 1. filter buffer with filtered values
l=0;
for (i = 0; i < uiCuHeight2; i++)
{
piFilteredBuf1[uiWidth * (uiCuHeight2 - i)] = piFilterBufN[l++];
}
piFilteredBuf1[0] = piFilterBufN[l++];
for (i = 0; i < uiCuWidth2; i++)
{
piFilteredBuf1[1 + i] = piFilterBufN[l++];
}
}
本文深入剖析HEVC编码标准中的帧内预测机制,重点介绍了initAdiPattern函数的功能及其实现细节,包括相邻点可用性检测、参考样点替换与平滑滤波等关键步骤。
1080

被折叠的 条评论
为什么被折叠?



