POJ 2080 Calendar

Calendar

Description

A calendar is a system for measuring time, from hours and minutes, to months and days, and finally to years and centuries. The terms of hour, day, month, year and century are all units of time measurements of a calender system. 
According to the Gregorian calendar, which is the civil calendar in use today, years evenly divisible by 4 are leap years, with the exception of centurial years that are not evenly divisible by 400. Therefore, the years 1700, 1800, 1900 and 2100 are not leap years, but 1600, 2000, and 2400 are leap years. 
Given the number of days that have elapsed since January 1, 2000 A.D, your mission is to find the date and the day of the week.

Input

The input consists of lines each containing a positive integer, which is the number of days that have elapsed since January 1, 2000 A.D. The last line contains an integer −1, which should not be processed. 
You may assume that the resulting date won’t be after the year 9999.

Output

For each test case, output one line containing the date and the day of the week in the format of "YYYY-MM-DD DayOfWeek", where "DayOfWeek" must be one of "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" and "Saturday".

Sample Input

1730
1740
1750
1751
-1

Sample Output

2004-09-26 Sunday
2004-10-06 Wednesday
2004-10-16 Saturday
2004-10-17 Sunday


这道题错得很惨,一直WA。每次遇到这种题都有点不稳的,一直有细节问题,最后全部删掉用另一种方式写了一遍,过了,但罚时也是真的惨。



AC代码:


#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
string week[9]={"Saturday","Sunday","Monday","Tuesday","Wednesday","Thursday","Friday"};
int day_y(int x)
{
	if((x%4==0&&x%100!=0)||x%400==0)
		return 366;
	return 365;
}
int day_m(int y,int x)
{
	if(x==1||x==3||x==5||x==7||x==8||x==10||x==12)
		return 31;
	if(((y%4==0&&y%100!=0)||y%400==0)&&x==2)
		return 29;
	else if(x==2)
		return 28;
	return 30;
}
int main()
{
	int n;
	int year,month,day;
	while(cin>>n)
	{
		if(n==-1)
			break;
		year=2000;
		month=1;
		day=n%7;
		while(n>=day_y(year))
		{
			n-=day_y(year);
			year++;
		}
		while(n>=day_m(year,month))
		{
			n-=day_m(year,month);
			month++;
		}
		printf("%d-%02d-%02d ",year,month,n+1);
		cout<<week[day]<<endl;
	}
	return 0;
}


内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值