Kruskal算法是基于贪心的思想得到的。首先我们把所有的边按照权值先从小到大排列,接着按照顺序选取每条边,如果这条边的两个端点不属于同一集合,那么就将它们合并,直到所有的点都属于同一个集合为止。这里需要用到并查集。换而言之,Kruskal算法就是基于并查集的贪心算法。HDU1863是个很好的例子。
我们用现在来模拟一下Kruskal算法,下面给出一个无向图B,我们使用Kruskal来找无向图B的最小生成树。
首先,我们将所有的边都进行从小到大的排序。排序之后根据贪心准则,我们选取最小边(A,D)。我们发现顶点A,D不在一棵树上,所以合并顶点A,D所在的树,并将边(A,D)加入边集E‘。
我们接着在剩下的边中查找权值最小的边,于是我们找到的(C,E)。我们可以发现,顶点C,E仍然不在一棵树上,所以我们合并顶点C,E所在的树,并将边(C,E)加入边集E'
不断重复上述的过程,于是我们就找到了无向图B的最小生成树,如下图所示:
- 输入: 图G
- 输出: 图G的最小生成树
- 具体流程:
- (1)将图G看做一个森林,每个顶点为一棵独立的树
- (2)将所有的边加入集合S,即一开始S = E
- (3)从S中拿出一条最短的边(u,v),如果(u,v)不在同一棵树内,则连接u,v合并这两棵树,同时将(u,v)加入生成树的边集E'
- (4)重复(3)直到所有点属于同一棵树,边集E'就是一棵最小生成树
-