区间调度问题

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 10000;
int s[maxn],t[maxn];
pair<int, int> a[maxn];
int main()
{
    int n;
    cin >> n;
    for(int i=0; i<n; i++)
        cin >> s[i];
    for(int i=0; i<n; i++)
        cin >> t[i];

    for(int i=0; i<n; i++)
    {
        a[i].first = t[i];
        a[i].second = s[i];
    }
    sort(a, a+n);
    int ans = 0, t = 0;
    for(int i=0; i<n; i++)
    {
        if(t<a[i].second)
        {
            ans++;
            t = a[i].first;
        }
    }
    cout << ans << endl;
    return 0;
}
/*
5
1 2 4 6 8
3 5 7 9 10
3

Process returned 0 (0x0)   execution time : 8.684 s
Press any key to continue.
*/

### 加权区间调度问题的C++实现 加权区间调度问题是给定一组具有权重的任务,每个任务有一个开始时间和结束时间。目标是在不重叠的情况下选择总权重最大的子集。 #### 动态规划方法 动态编程是一种有效的方法解决这个问题。通过预先计算每个区间的最晚兼容区间存储这些信息,可以显著提高效率[^1]。 ```cpp #include <iostream> #include <vector> #include <algorithm> using namespace std; struct Interval { int start; int finish; double value; // 权重 }; // 找到最后一个与当前活动i相容的最大索引j (即finish[j]<=start[i]) int findLatestNonConflict(const vector<Interval>& intervals, int i) { for(int j=i-1;j>=0;j--) { if(intervals[j].finish <= intervals[i].start) return j; } return -1; } double weightedJobScheduling(vector<Interval> &jobs){ sort(jobs.begin(), jobs.end(), [](const Interval& lhs, const Interval& rhs){return lhs.finish < rhs.finish;} ); vector<double> dp(jobs.size()); dp[0]=jobs[0].value; for(size_t i=1;i<dp.size();i++){ auto includeProf = jobs[i].value; int l = findLatestNonConflict(jobs,i); if(l != -1) includeProf += dp[l]; dp[i] = max(includeProf , dp[i-1]); } return dp.back(); } ``` 此代码实现了基于动态规划的加权区间调度算法。首先按照完成时间对所有作业进行了排序,接着构建了一个`dp[]`数组用于保存截止至第i项工作的最大收益。对于每一个工作,程序会尝试找到之前最近的一个与其互斥的工作,决定是否应该加入该项工作以获得更高的累积价值[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值