使用apriori算法进行关联分析

本文通过一系列单元测试案例介绍了Apriori算法的应用。主要内容包括:子集生成、最小支持度过滤、频繁项集联合以及从文件中读取交易数据等。通过具体示例展示了如何使用Apriori算法发现交易数据中的关联规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

apple,beer,rice,chicken
apple,beer,rice
apple,beer
apple,mango
milk,beer,rice,chicken
milk,beer,rice
milk,beer
milk,mango

假设上述是购买清单,使用算法来判断关联性

from collections import defaultdict
from io import BytesIO as StringIO
from itertools import chain
from mock import patch
import os
import unittest

from apriori import (
    getItemSetTransactionList,
    dataFromFile,
    joinSet,
    printResults,
    returnItemsWithMinSupport,
    runApriori,
    subsets,
)


class AprioriTest(unittest.TestCase):
    def test_subsets_should_return_empty_subsets_if_input_empty_set(self):
        result = tuple(subsets(frozenset([])))

        self.assertEqual(result, ())

    def test_subsets_should_return_non_empty_subsets(self):
        result = tuple(subsets(frozenset(['beer', 'rice'])))

        self.assertEqual(result[0], ('beer',))
        self.assertEqual(result[1], ('rice',))
        self.assertEqual(result[2], ('beer', 'rice',))

    def test_return_items_with_min_support(self):
        itemSet = set([
            frozenset(['apple']),
            frozenset(['beer']),
            frozenset(['chicken']),
            frozenset(['mango']),
            frozenset(['milk']),
            frozenset(['rice'])
        ])
        transactionList = [
            frozenset(['beer', 'rice', 'apple', 'chicken']),
            frozenset(['beer', 'rice', 'apple']),
            frozenset(['beer', 'apple']),
            frozenset(['mango', 'apple']),
            frozenset(['beer', 'rice', 'milk', 'chicken']),
            frozenset(['beer', 'rice', 'milk']),
            frozenset(['beer', 'milk']),
            frozenset(['mango', 'milk'])
        ]
        minSupport = 0.5
        freqSet = defaultdict(int)

        result = returnItemsWithMinSupport(
            itemSet,
            transactionList,
            minSupport,
            freqSet
        )

        expected = set([
            frozenset(['milk']),
            frozenset(['apple']),
            frozenset(['beer']),
            frozenset(['rice'])
        ])
        self.assertEqual(result, expected)

        expected = defaultdict(
            int,
            {
                frozenset(['apple']): 4,
                frozenset(['beer']): 6,
                frozenset(['chicken']): 2,
                frozenset(['mango']): 2,
                frozenset(['milk']): 4,
                frozenset(['rice']): 4
            }
        )
        self.assertEqual(freqSet, expected)

    def test_join_set_and_get_two_element_itemsets(self):
        itemSet = set([
            frozenset(['apple']),
            frozenset(['beer']),
            frozenset(['chicken']),
            frozenset(['mango']),
            frozenset(['milk']),
            frozenset(['rice'])
        ])

        result = joinSet(itemSet, 2)

        expected = set([
            frozenset(['chicken', 'mango']),
            frozenset(['rice', 'apple']),
            frozenset(['beer', 'apple']),
            frozenset(['rice', 'milk']),
            frozenset(['beer', 'rice']),
            frozenset(['chicken', 'apple']),
            frozenset(['beer', 'milk']),
            frozenset(['chicken', 'rice']),
            frozenset(['beer', 'mango']),
            frozenset(['beer', 'chicken']),
            frozenset(['apple', 'milk']),
            frozenset(['mango', 'milk']),
            frozenset(['mango', 'apple']),
            frozenset(['rice', 'mango']),
            frozenset(['chicken', 'milk'])
        ])
        self.assertEqual(result, expected)

    def test_join_set_and_get_three_element_itemsets(self):
        itemSet = set([
            frozenset(['apple', 'beer']),
            frozenset(['beer']),
            frozenset(['chicken']),
            frozenset(['mango']),
            frozenset(['milk']),
            frozenset(['rice'])
        ])

        result = joinSet(itemSet, 3)

        expected = set([
            frozenset(['beer', 'mango', 'apple']),
            frozenset(['beer', 'apple', 'chicken']),
            frozenset(['beer', 'apple', 'milk']),
            frozenset(['beer', 'rice', 'apple'])
        ])
        self.assertEqual(result, expected)

    def test_get_itemset_and_transaction_list_from_data_iterator(self):
        data_iterator = [
            frozenset(['beer', 'rice', 'apple', 'chicken']),
            frozenset(['mango', 'beer']),
        ]

        itemSet, transactionList = getItemSetTransactionList(data_iterator)

        expected = set([
            frozenset(['chicken']),
            frozenset(['apple']),
            frozenset(['beer']),
            frozenset(['rice']),
            frozenset(['mango'])
        ])
        self.assertEqual(itemSet, expected)

        expected = data_iterator
        self.assertEqual(transactionList, expected)

    def test_read_data_from_file(self):
        os.system('echo \'apple,beer,rice\' > test_apriori.csv')

        result = dataFromFile('test_apriori.csv')
        data = [each for each in result]

        expected = frozenset(['beer', 'rice', 'apple'])
        self.assertEqual(data[0], expected)

        os.system('rm test_apriori.csv')

    def test_print_results_should_have_results_in_defined_format(self):
        with patch('sys.stdout', new=StringIO()) as fake_output:
            items = [
                (('milk',), 0.5),
                (('apple',), 0.5),
                (('beer',), 0.75),
                (('rice',), 0.5),
                (('beer', 'rice'), 0.5)
            ]
            rules = [
                ((('beer',), ('rice',)), 0.6666666666666666),
                ((('rice',), ('beer',)), 1.0)
            ]
            printResults(items, rules)

            expected = "item: ('milk',) , 0.500\nitem: ('apple',) , "
            expected += "0.500\nitem: ('rice',) , 0.500\nitem: ('beer', "
            expected += "'rice') , 0.500\nitem: ('beer',) , 0.750\n\n"
            expected += "------------------------ RULES:\nRule: ('beer',) "
            expected += "==> ('rice',) , 0.667\nRule: ('rice',) ==> "
            expected += "('beer',) , 1.000\n"
            self.assertEqual(fake_output.getvalue(), expected)

    def test_run_apriori_should_get_items_and_rules(self):
        data = 'apple,beer,rice,chicken\n'
        data += 'apple,beer,rice\n'
        data += 'apple,beer\n'
        data += 'apple,mango\n'
        data += 'milk,beer,rice,chicken\n'
        data += 'milk,beer,rice\n'
        data += 'milk,beer\n'
        data += 'milk,mango'
        os.system('echo \'' + data + '\' > test_apriori.csv')

        inFile = dataFromFile('test_apriori.csv')
        minSupport = 0.5
        minConfidence = 0.05

        items, rules = runApriori(inFile, minSupport, minConfidence)

        expected = [
            (('milk',), 0.5),
            (('apple',), 0.5),
            (('beer',), 0.75),
            (('rice',), 0.5),
            (('beer', 'rice'), 0.5)
        ]
        self.assertEqual(items, expected)

        expected = [
            ((('beer',), ('rice',)), 0.6666666666666666),
            ((('rice',), ('beer',)), 1.0)
        ]
        self.assertEqual(rules, expected)

        os.system('rm test_apriori.csv')


if __name__ == '__main__':
    unittest.main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值