
模式识别
文章平均质量分 76
ayw_hehe
这个作者很懒,什么都没留下…
展开
-
[转载]SVM入门(四)线性分类器的求解——问题的描述Part1
上节说到我们有了一个线性分类函数,也有了判断解优劣的标准——即有了优化的目标,这个目标就是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?回头再看看我们对间隔和几何间隔的定义: 间隔:δ=y(wx+b)=|g(x)| 几何间隔: 可以看出δ=||w||δ几何。注意到几何间隔与||w||是成反比的,因此最大化几何间隔与最小化||w||完全是一回事。而我们常用的方法并不是固定||w||的大小而寻求最大几何间隔,而是固定间隔(例如固定转载 2010-07-12 10:07:00 · 728 阅读 · 0 评论 -
KL距离,Kullback-Leibler Divergence
KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。其物理意义是:在相同事件空间里,概率分布P(x)的事件空间,若用概转载 2011-08-17 14:22:56 · 3214 阅读 · 0 评论 -
libSVM应用举例
转自:计算机视觉小菜鸟的专栏http://blog.youkuaiyun.com/carson2005/article/details/6539218 前面提到,很多人看到libSVM这么多的参数,估计要犯晕了。没关系,我之前把相关的libSVM参数已经讲解了一遍,这里,再给出libSVM的转载 2011-07-29 10:05:56 · 1238 阅读 · 0 评论 -
libsvm教程
转自:Lunda8的百度空间http://hi.baidu.com/lunda8/blog/item/22a33453e7e00a3542a75bf5.html(很佩服林智仁老师,在我们宝岛台湾上有这么杰出的老师真的不简单,而且libsvm似乎已经成了研究svm的主流工具,在此引转载 2011-07-29 09:35:47 · 6637 阅读 · 0 评论 -
这个网页-svm 资料
<br />http://hi.baidu.com/zxdker/blog/item/bbe1571e625b1fcfa686692e.html原创 2010-08-13 10:12:00 · 635 阅读 · 0 评论 -
(转载)Histograms of Oriented Gradients (HOG)理解
最近在看人检测的文章,最经典的就是《Histograms of Oriented Gradients for Human Detection》,但是这篇文章写的很难懂,不清晰,作者似乎故意不让你去读懂,网上有一个文章很好,是对这篇文章的学习笔记,转来研究:HOG descriptors 是应用在计算机视觉和图像处理领域,用于目标检测的特征描述器。这项技术是用来计算局部图像梯度的方向信息的统计值。这种方法跟边缘方向直方图(edge orientation histograms)、尺度不变特征变换(scale-转载 2010-08-03 14:08:00 · 1244 阅读 · 1 评论 -
AdaBoost算法原理
<br />AdaBoost算法针对不同的训练集训练同一个基本分类器(弱分类器),然后把这些在不同训练集上得到的分类器集合起来,构成一个更强的最终的分类器(强分类器)。理论证明,只要每个弱分类器分类能力比随机猜测要好,当其个数趋向于无穷个数时,强分类器的错误率将趋向于零。AdaBoost算法中不同的训练集是通过调整每个样本对应的权重实现的。最开始的时候,每个样本对应的权重是相同的,在此样本分布下训练出一个基本分类器h1(x)。对于h1(x)错分的样本,则增加其对应样本的权重;而对于正确分类的样本,则降低其权转载 2010-08-02 09:57:00 · 680 阅读 · 0 评论 -
核函数方法简介
<br />(1)核函数发展历史<br /> 早在1964年Aizermann等在势函数方法的研究中就将该技术引入到机器学习领域,但是直到1992年Vapnik等利用该技术成功地将线性SVMs推广到非线性SVMs时其潜力才得以充分挖掘。而核函数的理论则更为古老,Mercer定理可以追溯到1909年,再生核希尔伯特空间(ReproducingKernel Hilbert Space, RKHS)研究是在20世纪40年代开始的。<br />(2)核函数方法原理<br /> 根据模式识别理论,低维空间转载 2010-07-15 17:50:00 · 4306 阅读 · 0 评论 -
[转载]SVM入门(十)将SVM用于多类分类
从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题。而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别。如何由两类分类器得到多类分类器,就是一个值得研究的问题。 还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给转载 2010-07-12 10:19:00 · 1517 阅读 · 2 评论 -
[转载]SVM入门(九)松弛变量(续)
接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C。回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的作用(表征你有多么重视离群点,C越大越重视,越不想丢掉它们)。这个式子是以前做SVM的人写的,大家也就这么用,但没有任何规定说必须对所有的松弛变量都使用同一个惩罚因子,我们完全可以给每一个离群点都使用不同的C,这时就意味着你对每个样本的重视程度都不一样,有些样本丢了也就丢了,错了也就错了,这些就给一个比较小的C;而转载 2010-07-12 10:15:00 · 876 阅读 · 1 评论 -
[转载]SVM入门(八)松弛变量
现在我们已经把一个本来线性不可分的文本分类问题,通过映射到高维空间而变成了线性可分的。就像下图这样: 圆形和方形的点各有成千上万个(毕竟,这就是我们训练集中文档的数量嘛,当然很大了)。现在想象我们有另一个训练集,只比原先这个训练集多了一篇文章,映射到高维空间以后(当然,也使用了相同的核函数),也就多了一个样本点,但是这个样本的位置是这样的: 就是图中黄色那个点,它是方形的,因而它是负类的一个样本,这单独的一个样本,使得原本线性可分的问题变成了线性不可分的。这样类似的问题(仅有少数点线性不可分)叫做“近转载 2010-07-12 10:13:00 · 910 阅读 · 1 评论 -
[转载]SVM入门(五)线性分类器的求解——问题的描述Part2
从最一般的定义上说,一个求最小值的问题就是一个优化问题(也叫寻优问题,更文绉绉的叫法是规划——Programming),它同样由两部分组成,目标函数和约束条件,可以用下面的式子表示: (式1) 约束条件用函数c来表示,就是constrain的意思啦。你可以看出一共有p+q个约束条件,其中p个是不等式约束,q个等式约束。 关于这个式子可以这样来理解:式中的x是自变量,但不限定它的维数必须为1(视乎你解决的问题空间维数,对我们的文本分类来说,那可是成千上万啊)。要求f(x)在哪一点上取得最小值(反倒不太转载 2010-07-12 10:08:00 · 651 阅读 · 0 评论 -
[转载]SVM入门(二)线性分类器Part 1
线性分类器(一定意义上,也可以叫做感知机) 是最简单也很有效的分类器形式.在一个线性分类器中,可以看到SVM形成的思路,并接触很多SVM的核心概念. 用一个二维空间里仅有两类样本的分类问题来举个小例子。如图所示 C1和C2是要区分的两个类别,在二维平面中它们的样本如上图所示。中间的直线就是一个分类函数,它可以将两类样本完全分开。一般的,如果一个线性函数能够将样本完全正确的分开,就称这些数据是线性可分的,否则称为非线性可分的。 什么叫线性函数呢?在一维空间里就是一个点,在二维空间里就是一条直线,转载 2010-07-12 10:03:00 · 768 阅读 · 0 评论 -
[转载]SVM入门(一)SVM的八股简介
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有转载 2010-07-12 10:01:00 · 795 阅读 · 0 评论 -
[转载]SVM入门(七)为何需要核函数
生存?还是毁灭?——哈姆雷特 可分?还是不可分?——支持向量机 之前一直在讨论的线性分类器,器如其名(汗,这是什么说法啊),只能对线性可分的样本做处理。如果提供的样本线性不可分,结果很简单,线性分类器的求解程序会无限循环,永远也解不出来。这必然使得它的适用范围大大缩小,而它的很多优点我们实在不原意放弃,怎么办呢?是否有某种方法,让线性不可分的数据变得线性可分呢? 有!其思想说来也简单,来用一个二维平面中的分类问题作例子,你一看就会明白。事先声明,下面这个例子是网络早就有的,我一时找不到原作者的正确信息转载 2010-07-12 10:11:00 · 787 阅读 · 0 评论 -
[转载]SVM入门(六)线性分类器的求解——问题的转化,直观角度
让我再一次比较完整的重复一下我们要解决的问题:我们有属于两个类别的样本点(并不限定这些点在二维空间中)若干,如图, 圆形的样本点定为正样本(连带着,我们可以把正样本所属的类叫做正类),方形的点定为负例。我们想求得这样一个线性函数(在n维空间中的线性函数): g(x)=wx+b 使得所有属于正类的点x+代入以后有g(x+)≥1,而所有属于负类的点x-代入后有g(x-)≤-1(之所以总跟1比较,无论正一还是负一,都是因为我们固定了间隔为1,注意间隔和几何间隔的区别)。代入g(x)后的值如果在1和-1之间,转载 2010-07-12 10:10:00 · 787 阅读 · 1 评论 -
[转载]SVM入门(三)线性分类器Part 2
上回说到对于文本分类这样的不适定问题(有一个以上解的问题称为不适定问题),需要有一个指标来衡量解决方案(即我们通过训练建立的分类模型)的好坏,而分类间隔是一个比较好的指标。 在进行文本分类的时候,我们可以让计算机这样来看待我们提供给它的训练样本,每一个样本由一个向量(就是那些文本特征所组成的向量)和一个标记(标示出这个样本属于哪个类别)组成。如下: Di=(xi,yi) xi就是文本向量(维数很高),yi就是分类标记。 在二元的线性分类中,这个表示分类的标记只有两个值,1和-1(用来表示属于还转载 2010-07-12 10:06:00 · 711 阅读 · 1 评论 -
【转】bootstrap, boosting, bagging 几种方法的联系
转自:http://blog.youkuaiyun.com/jlei_apple/article/details/8168856这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jackknife, bagging, boosting, random forest 都有介绍,以下是搜索得到的原文,没找到博客作者的地址,在这里致谢作者的研究。一并列出一些转载 2014-02-21 16:22:11 · 1034 阅读 · 0 评论