洛谷P2522 - [HAOI2011]Problem b

本文深入探讨了莫比乌斯反演算法在解决特定数学问题中的应用,通过实例详细讲解了如何利用该算法高效计算两数最大公约数等于特定值的数对个数。文章提供了一种优化计算策略,复杂度为O(T√10^5),并附带源代码实现。

Portal

Description

进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1}^{x_2} \sum_{j=y_1}^{y_2} [gcd(i,j)=d]\)

Solution

莫比乌斯反演入门题。
\(calc(n,m)\)表示\(i\in[1,n],j\in[1,m]\)\(gcd(i,j)=d\)的数对\((i,j)\)的个数。那么简单地进行容斥,可知\(ans=calc(x_2,y_2)-calc(x_1-1,y_2)-calc(x_2,y_1-1)+calc(x_1-1,x_2-1)\)
于是考虑如何计算\(calc(n,m)\)
\[ f(d) = \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \]

\[\begin{align*} F(x) &= \sum_{x|d} f(d) \\ &= \sum_{x|d} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=d] \\ &= \sum_{k=1}^{⌊\frac{n}{x}⌋} \sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=kx] \\ &= ⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋ \end{align*}\] \(gcd(i,j)=kx \Leftrightarrow x|i\)\(x|j\),那满足条件的\((i,j)\)就有\(⌊\frac{n}{x}⌋⌊\frac{m}{x}⌋\)对。再进行莫比乌斯反演:
\[ f(x)= \sum_{x|d} \mu(\frac{d}{x}) F(d) = \sum_{x|d} \mu(\frac{d}{x})⌊\frac{n}{d}⌋⌊\frac{m}{d}⌋ = \sum_{k=1}^{⌊\frac{n}{x}⌋} \mu(k)⌊\frac{n}{kx}⌋⌊\frac{m}{kx}⌋ \]这个做法看起来是\(O(\dfrac{n}{x})\)的。不过由于\(⌊\dfrac{n}{i}⌋\)最多只有\(\sqrt n\)种取值,所以我们可以以\(O(\sqrt n)\)的复杂度进行计算。

i123456789101112131415
15/i1575332211111111

观察发现,一个取值为\(v\)的区间是以\(⌊\frac{n}{v}⌋\)结尾的,下一个区间是从\(⌊\frac{n}{v}⌋+1\)开始的,模拟这一性质去计算即可。若对于区间\(k\in[L,R]\)\(⌊\frac{n}{kx}⌋=v_1,⌊\frac{m}{kx}⌋=v_2\),那么该区间对答案的贡献为\(v_1v_2\sum_{k=L}^R \mu(k)\),预处理出\(\mu(x)\)的前缀和即可。

时间复杂度\(O(T\sqrt {10^5})\)

Code

//[HAOI2011]Problem b
#include <algorithm>
#include <cstdio>
using std::min; using std::swap;
typedef long long lint;
inline char gc()
{
    static char now[1<<16],*s,*t;
    if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
    return *s++;
}
inline int read()
{
    int x=0; char ch=gc();
    while(ch<'0'||'9'<ch) ch=gc();
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x;
}
const int N=5e4+10;
int mu[N],pre[N];
int cntP,pr[N]; bool notP[N];
void getMu(int n)
{
    mu[1]=1;
    for(int i=2;i<=n;i++)
    {
        if(!notP[i]) pr[++cntP]=i,mu[i]=-1;
        for(int j=1;j<=cntP;j++)
        {
            if((lint)i*pr[j]>n) break;
            int x=i*pr[j]; notP[x]=true;
            if(i%pr[j]) mu[x]=-mu[i]; else {mu[x]=0; break;}
        }
    }
    for(int i=1;i<=n;i++) pre[i]=pre[i-1]+mu[i];
}
int k;
lint calc(int x,int y)
{
    x/=k,y/=k; if(x>y) swap(x,y);
    lint res=0;
    for(int L=1,R;L<=x;L=R+1)
    {
        int v1=x/L,v2=y/L; R=min(x/v1,y/v2);
        res+=1LL*(pre[R]-pre[L-1])*v1*v2;
    }
    return res;
}
int main()
{
    getMu(5e4);
    int Q=read();
    while(Q--)
    {
        int fr1=read(),to1=read(),fr2=read(),to2=read(); k=read();
        printf("%lld\n",calc(to1,to2)-calc(fr1-1,to2)-calc(to1,fr2-1)+calc(fr1-1,fr2-1));
    }
    return 0;
}

P.S.

同样的题洛谷P2257

转载于:https://www.cnblogs.com/VisJiao/p/LgP2522.html

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值