洛谷P3097 - [USACO13DEC]最优挤奶Optimal Milking

本文介绍了一种使用线段树数据结构解决特定数列最大贡献问题的方法。通过维护四种状态,即不选两端、仅选一端或两端全选的情况,实现了高效的更新和查询。适用于动态修改数列并快速求解最大贡献值的场景。

Portal

Description

给出一个\(n(n\leq4\times10^4)\)个数的数列\(\{a_n\}(a_i\geq1)\)。一个数列的最大贡献定义为其中若干个不相邻的数的和的最大值。进行\(m(m\leq5\times10^4)\)次操作,每次修改数列中的一个数并询问此时的最大贡献。

Solution

线段树。
对于线段树上每个节点\([L,R]\),维护四个值\(f_{00},f_{01},f_{10},f_{11}\),分别表示\(a_L,a_R\)都不选,不选\(a_L\)\(a_R\),选\(a_L\)不选\(a_R\)\(a_L,a_R\)都选的最大贡献。那么\(ans=max\{f[rt]\}\)
接下来只需要考虑如何合并。其实很简单,只要保证中间的两个不全是\(1\)就好:
\[ f_{00}=max\{f_{00}[Ls]+f_{00}[Rs],f_{01}[Ls]+f_{00}[Rs],f_{00}[Ls]+f_{10}[Rs]\} \\ f_{01}=max\{f_{00}[Ls]+f_{01}[Rs],f_{01}[Ls]+f_{01}[Rs],f_{00}[Ls]+f_{11}[Rs]\} \\ f_{10}=max\{f_{10}[Ls]+f_{00}[Rs],f_{11}[Ls]+f_{00}[Rs],f_{10}[Ls]+f_{10}[Rs]\} \\ f_{11}=max\{f_{10}[Ls]+f_{01}[Rs],f_{11}[Ls]+f_{01}[Rs],f_{10}[Ls]+f_{11}[Rs]\}\]

时间复杂度\(O(mlogn)\)

Code

//[USACO13DEC]最优挤奶Optimal Milking
#include <cstdio>
typedef long long lint;
inline char gc()
{
    static char now[1<<16],*s,*t;
    if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
    return *s++;
}
inline int read()
{
    int x=0; char ch=gc();
    while(ch<'0'||'9'<ch) ch=gc();
    while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
    return x;
}
inline int max(int x,int y) {return x>y?x:y;}
const int N=16e4+10;
int n,m;
#define Ls (p<<1)
#define Rs (p<<1|1)
int rt; lint f00[N],f01[N],f10[N],f11[N];
inline void update(int p)
{
    f00[p]=max(f00[Ls]+f00[Rs],max(f01[Ls]+f00[Rs],f00[Ls]+f10[Rs]));
    f01[p]=max(f00[Ls]+f01[Rs],max(f01[Ls]+f01[Rs],f00[Ls]+f11[Rs]));
    f10[p]=max(f10[Ls]+f00[Rs],max(f11[Ls]+f00[Rs],f10[Ls]+f10[Rs]));
    f11[p]=max(f10[Ls]+f01[Rs],max(f11[Ls]+f01[Rs],f10[Ls]+f11[Rs]));
}
void ins(int p,int L0,int R0,int x,int v)
{
    if(L0==x&&x==R0) {f00[p]=f01[p]=f10[p]=0,f11[p]=v; return;}
    int mid=L0+R0>>1;
    if(x<=mid) ins(Ls,L0,mid,x,v);
    else ins(Rs,mid+1,R0,x,v);
    update(p);
}
int main()
{
    n=read(),m=read();
    rt=1;
    for(int i=1;i<=n;i++) ins(rt,1,n,i,read());
    lint ans=0;
    for(int i=1;i<=m;i++)
    {
        int x=read(),v=read();
        ins(rt,1,n,x,v);
        ans+=max(max(f00[rt],f01[rt]),max(f10[rt],f11[rt]));
    }
    printf("%lld\n",ans);
    return 0;
}

P.S.

标题好长呀...

转载于:https://www.cnblogs.com/VisJiao/p/LgP3097.html

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值