位运算符

位操作是程序设计中对位模式按位或二进制数的一元和二元操作。
在许多古老的微处理器上, 位运算比加减运算略快, 通常位运算比乘除法运算要快很多。
在现代架构中, 情况并非如此:位运算的运算速度通常与加法运算相同(仍然快于乘法运算)。

操作数只能为整型和字符型数据

位运算符用来对二进制位进行操作,Java中提供了如下表所示的位运算符:位运算符中,除 ~ 以外,其余均为二元运算符。
操作数只能为整型和字符型数据
C语言中六种位运算符:
& 按位与
| 按位或
^ 按位异或
~取反
<<左移

>>右移
在这里插入图片描述在这里插入图片描述

按位与运算
按位与运算符"&"是双目运算符。 其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&5可写算式如下: 00001001 (9的二进制补码)&00000101 (5的二进制补码) 00000001 (1的二进制补码)可见9&5=1。 按位与运算通常用来对某些位清0或保留某些位。例如把a 的高八位清 0 , 保留低八位, 可作 a&255 运算 ( 255 的二进制数为11111111)。

按位或运算
按位或运算符“|”是双目运算符。 其功能是参与运算的两数各对应的二进位相或。只要对应的二个二进位有一个为1时,结果位就为1。参与运算的两个数均以补码出现。
例如:00001001 | 00000101 等于 00001101
可写算式如下:
(十进制为13)可见9|5=13

按位异或运算
按位异或运算符“^”是双目运算符。 其功能是参与运算的两数各对应的二进位相异或,当两对应的二进位相异时,结果为1
参与运算数仍以补码出现。
例如 00001001 ^ 00000101 等于 00001100
可写成算式如下:
(十进制为12)9 ^ 5=12

求反运算
求反运算符~为单目运算符,具有右结合性。 其功能是对参与运算的数的各二进位按位求反
例如
5的求反运算为:~00000101 = 11111010

左移运算
左移运算符“<<”是双目运算符。左移n位就是乘以2的n次方。 其功能把“<<”左边的运算数的各二进位全部左移若干位,由“<<”右边的数指定移动的位数,高位丢弃,低位补0总之左移就是: 丢弃最高位,0补最低位
1)例: a<<4 指把a的各二进位向左移动4位。如a=00000011(十进制3),左移4位后为00110000(十进制48)。
2)例: int i = 1; i = i << 2; //把i里的值左移2位 也就是说,1的2进制是000…0001(这里1前面0的个数和int的位数有关,32位机器,gcc里有31个0),左移2位之后变成 000…0100,也就是10进制的4,所以说左移1位相当于乘以2,那么左移n位就是乘以2的n次方了(有符号数不完全适用,因为左移有可能导致符号变化,下面解释原因)

需要注意的一个问题是:int类型最左端的符号位和移位移出去的情况. 我们知道,int是有符号的整形数,最左端的1位是符号位,即0正1负,那么移位的时候就会出现溢出, 例如: int i = 0x40000000; //16进制的40000000,为2进制的01000000…0000 i = i << 1; 那么,i在左移1位之后就会变成0x80000000,也就是2进制的100000…0000,符号位被置1,其他位全是0,变成了int类型所能表示的最小值,32位的int这个值是,溢出.如果再接着把i左移1位会出现什么情况呢?
在C语言中采用了丢弃最高位的处理方法,丢弃了1之后,i的值变成了0. 左移里一个比较特殊的情况是当左移的位数超过该数值类型的最大位数时,编译器会用左移的位数去模类型的最大位数,然后按余数进行移位,如: int i = 1, j = 0x80000000; //设int为32位 i = i << 33; // 33 % 32 = 1 左移1位,i变成2, j = j << 33; // 33 % 32 = 1 左移1位,j变成0,最高位被丢弃 .在用gcc编译这段程序的时候编译器会给出一个warning,说左移位数>=类型长度.那么实际上i,j移动的就是1位,也就是33%32后的余数.在gcc下是这个规则,不同编译器可能会不完全相同.

右移运算
右移运算符“>>”是双目运算符。右移n位就是除以2的n次方
其功能是把“>>”左边的运算数的各二进位全部右移若干位,“>>”右边的数指定移动的位数。
例如:设 a=15,a>>2 表示把00001111右移为00000011(十进制3)。 应该说明的是,对于有符号数,在右移时,符号位将随同移动。当为正数时, 最高位补0,而为负数时,符号位为1,最高位是补0或是补1 取决于编译系统的规定。Turbo C和很多系统规定为补1。
右移对符号位的处理和左移不同: 对于有符号整数来说,比如int类型,右移会保持符号位不变,
例如: int i = 0x80000000; i = i >> 1; //i的值不会变成0x40000000,而会变成0xc0000000。 就是说,对于有符号数,在右移时,符号位将随同移动: 当为正数时, 最高位补0, 而为负数时,符号位为1, 也就是汇编语言中的算术右移.同样当移动的位数超过类型的长度时,会取余数,然后移动余数个位. 最高位是补0或是补1 取决于编译系统的规定。Turbo C和很多系统规定为补1。 负数10100110 >>5(假设字长为8位),则得到的是 11111101 总之,在C中,左移是逻辑/算术左移(两者完全相同),右移是算术右移,会保持符号位不变.实际应用中可以根据情况用左/右移做快速的乘/除运算,这样会比循环效率高很多.

举例

判断int型变量a是奇数还是偶数          a&1 = 0 偶数     a&1 = 1 奇数
取int型变量a的第k位 (k=0,1,2……sizeof(int)),   即 a>>k&1
将int型变量a的第k位清0,       即a=a&~(1<<k)
将int型变量a的第k位置1,       即a=a|(1<<k)
int型变量循环左移k次,         即a=a<<k|a>>16-k (设sizeof(int)=16)
int型变量a循环右移k次,        即a=a>>k|a<<16-k (设sizeof(int)=16)

优点
C 语言位运算符在某些编程中如果灵活应用,则可以大大提高程序的执行效率,使程序执行时速度更高。
而C 语言主要应用于嵌入式开发、智能电器、通信行业等一些对效率和时间都要求很高的应用领域中,学好位运算符,在程序开发中灵活应用位运算符,往往能在这些应用中起到事半功倍的效果。

注意事项
位运算符使用的注意事项:
(1) 位运算是对字节或字中的实际二进制位进行检测、设置或移位,它只适用于字符型和整数型变量以及它们的变体,对其它数据类型不适用。
(2)关系运算和逻辑运算表达式的结果只能是1 或0,而位运算的结果可以取0 或1 以外的值。
(3)要注意区别位运算符和逻辑运算符的不同。


逻辑运算符
在形式逻辑中,逻辑运算符或逻辑联结词把语句连接成更复杂的复杂语句。例如,假设有两个逻辑命题,分别是“正在下雨”和“我在屋里”,我们可以将它们组成复杂命题“正在下雨,并且我在屋里”或“没有正在下雨”或“如果正在下雨,那么我在屋里”。一个将两个语句组成的新的语句或命题叫做复合语句或复合命题。

基本运算符
基本的操作符有:“非”(¬)、“与”(∧)、“或”(∨)、“条件”(→)以及“双条件”(↔)。“非”是一个一元操作符,它只操作一项(¬ P)。剩下的是二元操作符,操作两项来组成复杂语句(P ∧ Q, P ∨ Q, P → Q, P ↔ Q)。

注意,符号“与”(∧)和交集(∩),“或”(∨)和并集(∪)的相似性。这不是巧合:交集的定义使用“与”,并集的定义是用“或”。

这些连接符的真值表:

为了减少需要的括号的数量,有以下的优先规则:¬高于∧,∧高于∨,∨高于→。例如,P ∨ Q ∧ ¬ R → S是 (P ∨ (Q ∧ (¬ R)) → S的简便写法。

<think>好的,用户的问题是关于单片机中的“三位运算符”的使用说明或示例。首先,我需要确认用户是否指的是“三目运算符”或者是否存在其他可能的误解。因为在编程中,常见的位运算符通常是按位与(&)、按位或(|)、按位异或(^)、按位取反(~)、左移(<<)和右移(>>),这些通常被称为位运算符,而“三位运算符”这个术语并不常见,可能是用户输入时的笔误。 接下来,我会考虑用户提到的参考引用内容,其中提到了位运算符的种类,如左移、右移、按位取反等。用户可能将“三目运算符”误写为“三位运算符”,或者可能是指三个位的操作。但根据常见的编程知识,三目运算符(条件运算符)是存在的,形式为条件 ? 表达式1 : 表达式2,用于条件判断。而位运算符中并没有三位的运算符,因此需要进一步澄清。 然后,我需要检查单片机编程中常用的运算符。在C语言中,单片机常用的位运算符是上述提到的那些,每个运算符处理的是单个位或多个位的组合。例如,按位与用于屏蔽某些位,按位或用于设置某些位,移位运算用于乘以或除以2的幂次方。用户可能想了解如何使用这些位运算符进行三位的操作,比如同时操作三个位,或者处理三位的数据。 另外,用户可能是在问三目运算符在单片机中的应用,比如条件判断的简洁写法。但根据用户的引用内容,他们之前的问题是关于位运算符的,所以更可能是在询问位运算符相关的三位操作。例如,如何用位运算符提取或设置三个连续的位。 考虑到用户可能的混淆,回答中需要先澄清可能的术语误解,然后分别解释三目运算符和位运算符中的三位操作。同时,需要提供具体的示例代码,说明在单片机编程中如何应用这些运算符,比如寄存器操作中的位掩码设置、状态标志的读取或修改等。 最后,生成相关问题,帮助用户进一步理解相关概念,比如三目运算符与if语句的区别、位运算优化技巧等。</think>[系统级回答] 关于单片机编程中"三位运算符"的说明如下: 1. 术语澄清: "三位运算符"实际为术语混淆,可能指以下两种运算符: - 三目运算符(条件运算符):唯一的三操作数运算符$条件 ? 真值表达式 : 假值表达式$ - 位运算符:处理二进制位的运算符,如$&, |, ^, ~, <<, >>$等[^1] 2. 三目运算符示例: ```c // 设置GPIO输出电平 GPIO_PIN = (电压 > 2.5V) ? HIGH : LOW; // 计算PWM占空比 uint8_t duty_cycle = (温度 > 30) ? 75 : 50; ``` 3. 位运算符的三位操作: ```c // 定义3位状态寄存器(假设使用低3位) #define STATE_MASK 0x07 // 二进制00000111 // 设置后三位状态 PORT |= (new_state & STATE_MASK); // 保留其他位,设置低3位 // 读取中间三位(假设位3-5) uint8_t sensor_val = (ADC_DATA >> 3) & 0x07; // 三位置换操作 value = (value & 0xF8) | (new_bits & 0x07); // 保持高5位不变,替换低3位 ``` 4. 复合位运算示例: ```c // LED阵列控制(假设每3位控制一组RGB LED) uint32_t led_ctrl = 0; led_ctrl |= (red << 0) | (green << 1) | (blue << 2); // 设置第一组颜色 led_ctrl |= (模式 ? 0x38 : 0x07) << 3; // 根据模式设置第二组颜色 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值