超全大厂算法岗百问百答(推荐系统/机器学习/深度学习/C++/Spark/python)

本文详细梳理了机器学习、推荐系统、深度学习和C++、Python、Spark等技术的相关知识,涵盖了逻辑回归、朴素贝叶斯、树模型、特征工程、SVM等多个主题。文章特别强调了面试中的自我介绍和项目介绍,指出算法细节和数据结构与算法题的重要性,并给出了大量面试问题和准备建议,旨在帮助求职者提升算法面试的竞争力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前在准备秋招的时候,每次看到牛客网上那些大神手握七八个大厂的offer,就羡慕到不行,那会儿自己的机器学习算法水平还没法搬上台面,顶多也就是看了几个课程、做了两个比赛的水平,然后比赛还没得到任何的名次,就真的开始焦虑到不行,周围好多小伙伴都在大厂开始实习了,而我真的扪心自问,几乎零实习经历,算法也没系统性的推导过,leetcode也才偶尔刷一刷,大概刷了二十来题吧,用灾难来形容那时候的状态也不为过,我开始慌了,然后就开始静下心来各种找经验贴,牛客可谓是大佬云集,大概在这里看了十来篇,知乎上也看了好几篇,总结出了我觉得秋招算法岗的几个重点考察方向:自我介绍、项目介绍、算法细节、数据结构与算法题,接下来我一一来说一下这四个方向的细节。

  • 自我介绍

自我介绍说得好,一定会给面试官留下深刻的好印象,而且这一块全是自己来措辞,要突出的重点也是你自己来把控,所以从你的叙述中,面试官是可以听得出你对这个项目的熟悉程度以及你的思考深度的,所以,提前准备就尤为重要了,面试的时候要把每一个项目按照一定的逻辑叙述出来,在算法项目里面最为重要的当然是数据、特征、模型、效果,按照这个框架给讲清楚了,面试官听得轻松,接下来的面试阶段也会更流畅一些,因为面试官是会捕捉你的自我介绍里面的关键词的,以待之后的问答环节向你连环提问,这就暗含了一个tip,就是你所讲出来的,一定要做到比面试官更懂,那些做的含糊的东西就不要搬进来了,否则迟早会露馅。

  • 项目介绍

这是重中之重,项目会体现一个面试者的综合素质。那我们这种没有实习经历的该咋办呢?好办,去参加比赛,争取拿比赛的名次,然后把比赛里用到的算法搞的滚瓜烂熟的,面试官必然会对你项目中的细节展开,让你解剖一些他有疑问的点,比如正负样本的选取、特征处理、模型的细节,再比如你的比赛中用到了树模型,就得知道所有树模型相关的知识点,我随便举几个例子:XGBoost为什么对缺失值不敏感?相比普通的GBDT,XGBoost怎么处理缺失值?为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? 等等这种细节式的提问,一旦你回答的含糊其辞,面试官就必然会扣分的,所以千万不要怀着侥幸心理,觉得面试官不会问到,墨菲定理告诉我们,凡是可能出错的事就一定会发生,这些都是可以准备的,明明几乎是开卷考试了,为啥不提前去想好怎么回答,而要去考场上绞尽脑汁想个四不像的回答出来呢。比赛平台的话,大家肯定知道,像阿里天池、kaggle等等都是大家常参加比赛的平台。

  • 算法细节

面试官除了考察在项目中出现的算法的细节之外,还会就你的机器学习算法基础进行提问,我这里大概总结下比较重要的一些,传统算法: 逻辑回归、朴素贝叶斯、树模型(random forest/Adaboost/xgboost/lightgbm)、SVM、PageRank、聚类;一些机器学习的理论,非平衡问题、过拟合问题,交叉验证问题,模型选择问题;推荐系统:协同过滤、FM/FFM、LS-PLM、Wide&Deep、DeepFM、DIN、DIEN、ESMM、Embedding、召回、EE、性能评估;这些算是算法岗的核心,此外,一些代码语言的考察,也会是有一些面试官很看重的,比如C++/python/Spark等,当时为了准备这一项,我把我能想到的题都转化为了问答的形式,自问自答地去做准备,我在文章的最后把所有的题都列了出来。大家可以按照这个去准备,或者选择其中的一些。因为我面的是推荐算法岗位,所以会比较偏重这方面,后期如果我有时间,可以拓展到其他的领域,比如自然语言处理、计算机视觉等等。推荐的书的话,也是牛客上大神的一些经验,李航《统计学习方法》、《百面机器学习》、《百面深度学习》、《深度学习推荐系统》、周志华的《机器学习》。当然看完这些书是绝对不够的,看了不等于你掌握了,你循着我给你列出来的问题清单去过一遍,自己心里回答一遍,或者直接写出来,这样效果绝对顶,我在秋招的时候,真的几乎可以秒答,尽在自己的掌握之中。我也会在我的公众号陆续发布这些问题的解答,基本上已经写完了,大家也可以看我的网站,网站、公众号介绍在下面中有,欢迎大家一起交流。

  • 数据结构与算法题

这个也相当关键,有的公司甚至会根据你在这个方面的表现优劣决定你的去留,像头条是出了名的动态规划大师,老喜欢考一些中等或者hard的题,让人头疼。很多非计算机出身的因为本身没有基础,练习的不到位,就可能当场思路不清晰。我的建议是先按照专题来刷,比如像动态规划、滑动窗口专题、双指针、快慢指针、topK等等,刷个200题左右,然后就可以随机去刷了,一定要多刷题,这是强调一百遍都不为过的面试法则。推荐的书的话有《剑指offer》,网站的话可以找leetcode中文网。 好了废话少说,种一棵树最好的时间是十年前,其次是现在,如果觉得你的算法功底不够在秋招过程中斩获offer的话,那就从现在开始一一攻克,没什么难的。我也会陆陆续续在我的网站和公众号更新关于算法相关的问答、面试经验、内推等等内容,如果有兴趣的话可以关注一波,这个号我的预期是长期做,也会用心去做,希望可以给算法的同学带来切切实实的帮助。

file

以下就是上面提到的我整理的问题,我还会持续更新这个列表,后期主要的写作领地就在公众号了,估计牛客也不会常来,欢迎大家来加我的微信,一起交流。

  • 个人微信:ayao-algo file

机器学习百问百答

逻辑回归

  • 推导一下逻辑回归的损失函数,并解释其含义。
  • 在广告LR模型中,为什么要做特征组合?
  • 为什么 LR 模型要使用 sigmoid 函数,背后的数学原理是什么?为什么不用其他函数?
  • 为什么LR可以用来做点击率预估?
  • 满足什么样条件的数据用LR最好?换句话说,为了LR工作的更好,要对数据做一些什么处理?
  • 逻辑斯蒂回归能否解决非线性分类问题?
  • 给一个有m个样本n维特征的数据集,LR算法中梯度的维度是多少?
  • 逻辑回归损失函数为什么使用最大似然估计而不用最小二乘法?
  • 如何求解逻辑回归的参数?
  • SVM 和 LR 有什么异同?分别在什么情况下使用?
  • 为什么LR不适合用MSE?
  • 为什么逻辑回归需要先对特征离散化?
  • 并行LR的实现
  • 逻辑回归(Logistic regression)在金融领域有什么应用呢?

朴素贝叶斯

  • 什么是贝叶斯决策论?
  • 你知道什么叫做朴素贝叶斯吗?
  • 公司里面男性有60人,女性有40人,男性穿皮鞋的人数有25人,穿运动鞋的人数有35人,女性穿皮鞋的人数有10人,穿高跟鞋的人数有30人。现在你只知道有一个人穿了皮鞋,这时候你就需要推测他的性别是什么。如果推测出他是男性的概率大于女性,那么就认为他是男性,否则认为他是女性。
  • 你能给我说说朴素贝叶斯有什么优缺点吗?
  • “朴素”是朴素贝叶斯在进行预测时候的缺点,那么有这么一个明显的假设缺点在,为什么朴素贝叶斯的预测仍然可以取得较好的效果?
  • 什么是拉普拉斯平滑法?
  • 朴素贝叶斯中有没有超参数可以调?
  • 朴素贝叶斯中有多少种模型?
  • 你知道朴素贝叶斯有哪些应用吗?
  • 朴素贝叶斯是高方差还是低方差模型?
  • 朴素贝叶斯的假设条件是什么?优缺点分别是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值