codeforce "c.product of three numbers"

本文探讨了一个算法挑战,即给定一个整数n,寻找三个不同的整数a、b、c,使得a*b*c=n,且2≤a,b,c。文章提供了一段C++代码,用于解决这一问题,并通过多个测试案例验证了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given one integer number nn. Find three distinct integers a,b,ca,b,c such that 2≤a,b,c a⋅b⋅c=n or say that it is impossible to do it.

If there are several answers, you can print any.

You have to answer tt independent test cases.

Input

The first line of the input contains one integer tt (1≤t≤1001≤t≤100) — the number of test cases.

The next nn lines describe test cases. The ii-th test case is given on a new line as one integer nn (2≤n≤1092≤n≤109).

Output

For each test case, print the answer on it. Print “NO” if it is impossible to represent nn as a⋅b⋅ca⋅b⋅c for some distinct integers a,b,ca,b,c such that 2≤a,b,c2≤a,b,c.

Otherwise, print “YES” and any possible such representation.

#include<iostream>
#include<cmath>
using namespace std;
const long long Max = 1000000000;
int zs(long long x)
{
	int temp = 1;
	for (int i = 2; i < sqrt(x); i++)
	{
		if (x % i == 0)
		{
			return 1;
			temp = 0;
			break;
		}
	}
	if (temp == 1)
		return 0;
}
int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		long long n;
		int temp = 0;
		cin >> n;
		if (zs(n))
		{
			for (long long i = 2; i * i * i < n; i++)
			{
				if (n % i == 0 && zs(n / i))
				{
					for (long long j = 3; j * j < n / i; j++)
					{
						if((n/i)%j==0&&i<j&&i<n/i/j&&j<n/i/j )
						{
							
							
								cout << "YES" << endl;
								cout << i << " " << j << " " << n / i / j << endl;
								temp = 1;
								break;
							
						}
					}
				}
				if (temp == 1)
					break;
			}
		}
		else
		{
			cout << "NO" << endl;
			temp = 1;
		}
		if (temp == 0)
			cout << "NO" << endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值