图标点选验证码是一种常见的防止自动化攻击的手段,用户需要点击指定的图标来完成验证。本文介绍如何使用Java结合ONNX模型和Siamese神经网络来识别和分割图标点选验证码。
一、技术背景
图标点选验证码的破解分为两部分:图标分割和相似度对比。图标分割用于检测并裁剪出验证码图片中的各个图标;相似度对比则用于确定这些图标是否与指定的目标图标相匹配。
二、图标分割
1. 图像处理
首先,加载并处理图像。为了适应模型的输入要求,需要对图像进行缩放和填充。
java
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import javax.imageio.ImageIO;
import java.io.File;
import java.io.IOException;
public BufferedImage paddedResize(String imagePath, int newWidth, int newHeight) throws IOException {
BufferedImage image = ImageIO.read(new File(imagePath));
double scale = Math.min(newWidth / (double) image.getWidth(), newHeight / (double) image.getHeight());
int scaledWidth = (int) (image.getWidth() * scale);
int scaledHeight = (int) (image.getHeight() * scale);
BufferedImage newImage = new BufferedImage(newWidth, newHeight, BufferedImage.TYPE_INT_RGB);
Graphics2D g = newImage.createGraphics();
g.setColor(java.awt.Color.WHITE);
g.fillRect(0, 0, newWidth, newHeight);
int x = (newWidth - scaledWidth) / 2;
int y = (newHeight - scaledHeight) / 2;
g.drawImage(image, x, y, scaledWidth, scaledHeight, null);
g.dispose();
return newImage;
}
2. ONNX模型推理
加载ONNX模型并进行目标检测。
java
import ai.onnxruntime.*;
import java.nio.FloatBuffer;
public class ObjectDetection {
public float[][] detectObjects(BufferedImage image) throws OrtException {
OrtEnvironment env = OrtEnvironment.getEnvironment();
OrtSession session = env.createSession("models/icon_detection.onnx");
// Prepare tensor input and perform inference here
OnnxTensor inputTensor = prepareTensorInput(image, session);
OrtSession.Result output = session.run(Collections.singletonMap("input", inputTensor));
// Post-process the output and return bounding boxes
float[][] boxes = processOutput(output);
return boxes;
}
private OnnxTensor prepareTensorInput(BufferedImage image, OrtSession session) throws OrtException {
// Placeholder for actual implementation
FloatBuffer buffer = FloatBuffer.allocate(1 * 3 * 640 * 640);
return OnnxTensor.createTensor(session.getEnvironment(), buffer, new long[]{1, 3, 640, 640});
}
private float[][] processOutput(OrtSession.Result output) {
// Placeholder for actual implementation
return new float[0][];
}
}
3. 画框与裁剪
根据检测结果画出边框并裁剪图标。
java
import java.awt.BasicStroke;
import java.awt.Color;
import java.awt.Graphics2D;
public BufferedImage drawRectangle(String imagePath, int[] box) throws IOException {
BufferedImage image = ImageIO.read(new File(imagePath));
Graphics2D g = image.createGraphics();
g.setColor(Color.RED);
g.setStroke(new BasicStroke(3));
g.drawRect(box[0], box[1], box[2], box[3]);
g.dispose();
return image;
}
public BufferedImage cropImage(String imagePath, int[] box) throws IOException {
BufferedImage image = ImageIO.read(new File(imagePath));
return image.getSubimage(box[0], box[1], box[2], box[3]);
}
三、相似度对比
1. Siamese神经网络
使用Siamese网络进行相似度对比。
java
import org.tensorflow.SavedModelBundle;
import org.tensorflow.Tensor;
public float getSimilarity(String modelPath, BufferedImage img1, BufferedImage img2) {
try (SavedModelBundle model = SavedModelBundle.load(modelPath)) {
Tensor input1 = preprocessImage(img1);
Tensor input2 = preprocessImage(img2);
Tensor output = model.session().runner().feed("input_1", input1).feed("input_2", input2).fetch("output").run().get(0);
float[] outputData = new float[1];
output.copyTo(outputData);
return outputData[0];
}
}
private Tensor preprocessImage(BufferedImage image) {
// Placeholder for actual implementation
return Tensor.create(new float[1][60][60][3]);
}
四、测试与结果
进行模型测试并展示结果。
java
public class Main {
public static void main(String[] args) {
try {
String imagePath = "path/to/image.jpg";更多内容联系1436423940
BufferedImage resizedImage = paddedResize(imagePath, 640, 640);
ObjectDetection detector = new ObjectDetection();
float[][] boxes = detector.detectObjects(resizedImage);
for (int i = 0; i < boxes.length; i++) {
int[] box = { (int) boxes[i][0], (int) boxes[i][1], (int) boxes[i][2], (int) boxes[i][3] };
BufferedImage croppedImage = cropImage(imagePath, box);
ImageIO.write(croppedImage, "png", new File("cropped_image_" + i + ".png"));
}
} catch (Exception e) {
e.printStackTrace();
}
}
}