题目地址:https://leetcode.com/problems/super-ugly-number/
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]
is the sequence of the first 12 super ugly numbers given primes
= [2, 7, 13, 19]
of size 4.
Note:
(1) 1
is a super ugly number for any given primes
.
(2) The given numbers in primes
are in ascending order.
(3) 0 < k
≤ 100, 0 < n
≤ 106, 0 < primes[i]
< 1000.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
Subscribe to see which companies asked this question
这道题其实是上一道题 Ugly Number II 的加强版而已,上一道题给出的素数只有2,3,5,而这道题,要求给定任意的素数集合,然后求出第n个ugly number。
Ugly Number II 题目地址:https://leetcode.com/problems/ugly-number-ii/
对于ugly Number2 这道题,我采用的做法分别维护三个数组ugly1,ugly2,ugly3分别对应由2,3,5作为因子的数的集合。如
minv = min(ugly1[i], ugly2[i], ugly3[i])
ugly1[i + 1] = minv * 2
ugly2[i + 1] = minv * 3
ugly3[i + 1] = minv * 5
迭代n次,可以得到第n大的ugly NUmber。
同理,这道题也可以用这样的方法来做。不过由于prime数组的大小未知,开一个二维数组比较浪费空间。所以我们可以开一个跟prime数组大小一样的pointer数组,表示因子prime[i] 乘积的次数(这边这点比较抽象,需要看代码仔细理解哦)。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <limits.h>
using namespace std;
typedef unsigned long long ll;
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
int len = primes.size();
vector<int> pointer(len, 0);
vector<int> ugly(n + 1, INT_MAX);
ugly[0] = 1;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < len; ++j) {
int tmp = ugly[pointer[j]] * primes[j];
ugly[i] = min(ugly[i], tmp);
}
for (int j = 0; j < len; ++j) {
int tmp = ugly[pointer[j]] * primes[j];
if (ugly[i] == tmp)
pointer[j]++;
}
}
return ugly[n - 1];
}
};
int main(int argc, char* argv[]) {
Solution solution;
vector<int> primes;
primes.push_back(2);
primes.push_back(3);
primes.push_back(5);
int n;
while (cin >> n) {
cout << solution.nthSuperUglyNumber(n, primes) << endl;
}
return 0;
}