理解隐式接口和编译期多态

 
Object-Oriented programming(面向对象编程)的世界是围绕着 explicit interfaces(显式接口)和 runtime polymorphism(执行期多态)为中心的。例如,下面这个class(类)。

class Widget {
 public:
  Widget();
  virtual ~Widget();
  virtual std::size_t size() const;
  virtual void normalize();
  void swap(Widget& other);
  ...
};

以及这个function(函数),
void doProcessing(Widget& w)
{
 if (w.size() > 10 && w != someNastyWidget) {
  Widget temp(w);
  temp.normalize();
  temp.swap(w);
 }
}


我们可以这样谈论 doProcessing 中的 w
 ·因为 w 被声明为 Widget 类型的引用,w 必须支持 Widget interface(接口)。我们可以在源代码中找到这个 interface(接口)(例如,Widget .h 文件)以看清楚它是什么样子的,所以我们称其为一个 explicit interface(显式接口)——它在源代码中显式可见。
 ·因为 Widget 的一些 member functions(成员函数)是虚拟的,w 对这些函数的调用就表现为 runtime polymorphism(执行期多态):被调用的特定函数在执行期基于 w dynamic type(动态类型)来确定。

  templates(模板)和 generic programming(泛型编程)的世界是根本不同的。在那个世界,explicit interfaces(显式接口)和 runtime polymorphism(执行期多态)继续存在,但是它们不那么重要了。作为替代,把 implicit interfaces(隐式接口)和 compile-time polymorphism(编译期多态)推到了前面。为了了解这是怎样一种情况,看一下当我们把 doProcessing 从一个 function(函数)转为一个 function template(函数模板)时会发生什么:

template void doProcessing(T& w)
{
 if (w.size() > 10 && w != someNastyWidget) {
  T temp(w);
  temp.normalize();
  temp.swap(w);
 }
}


现在我们谈论 doProcessing 中的 w :
 ·w 必须支持的 interface(接口)是通过 template(模板)中在 w 身上所执行的操作确定的。在本例中,它显现为 w type (T) 必须支持 sizenormalize swap member functions(成员函数);copy construction(拷贝构造函数)(用于创建 temp);以及对不等于的比较(用于和 someNastyWidget 之间的比较)。我们将在以后看到这并不很精确,但是对于现在来说它已经足够正确了。重要的是这一系列必须有效地适合于模板编译的表达式是 T 必须支持的 implicit interface(隐式接口)。
 ·对诸如 operator> operator!= 这样的包含 w 的函数的调用可能伴随 instantiating templates(实例化模板)以使这些调用成功。这样的 instantiation(实例化)发生在编译期间。因为用不同的 template parameters(模板参数)实例化 function templates(函数模板)导致不同的函数被调用,因此以 compile-time polymorphism(编译期多态)著称。

 即使从没有使用过模板,也应该熟悉 runtime(运行期)和 compile-time polymorphism(编译期多态)之间的区别,因为它类似于确定一系列重载函数中哪一个应该被调用的过程(这个发生在编译期)和 virtual function(虚拟函数)调用的 dynamic binding(动态绑定)(这个发生在运行期)之间的区别。explicit(显式)和 implicit interfaces(隐式接口)之间的区别是与 template(模板)有关的新内容,需要对他进行近距离的考察。

 一个 explicit interface(显式接口)由 function signatures(函数识别特征)组成,也就是说,函数名,参数类型,返回值,等等。例如,Widget class(类)的 public interface(显式接口),

class Widget {
public:
 Widget();
 virtual ~Widget();
 virtual std::size_t size() const;
 virtual void normalize();
 void swap(Widget& other);
};

 由一个 constructor(构造函数),一个 destructor(析构函数),以及函数 sizenormalize swap 组成,再加上 parameter types(参数类型),return types(返回类型)和这些函数的 constnesses(常量性)。(它也包括 compiler-generated(编译器生成)的 copy constructor(拷贝构造函数)和 copy assignment operator(拷贝赋值运算符))它还可能包含 typedefs,还有,如果敢于违背让 data members(数据成员)private(私有)的建议,即使在这种情况下,这些 data members(数据成员)也不是。

 一个 implicit interface(隐式接口)有很大不同。它不是基于 function signatures(函数识别特征)的。它是由 valid expressions(合法表达式)组成的。再看一下在 doProcessing template 开始处的条件:

template void doProcessing(T& w)
{
if (w.size() > 10 && w != someNastyWidget) {
...

 对于 Tw 的类型)的 implicit interface(隐式接口)看起来有如下这些约束:
 ·它必须提供一个名为 size 的返回一个正数值的 member function(成员函数)。
 ·它必须支持一个用于比较两个类型 T 的对象的 operator!= 函数。(这里,我们假定 someNastyWidget 的类型为 T。)

 由于 operator overloading(运算符重载)的可能性,这两个约束都不必满足。是的,T 必须支持一个 size member function(成员函数),值得提及的是虽然这个函数可以是从一个 base class(基类)继承来的。但是这个 member function(成员函数)不需要返回一个整数类型。它甚至不需要返回一个数值类型。对于这种情况,它甚至不需要返回一个定义了 operator> 的类型!它要做的全部就是返回类型 X 的一个 object(对象),有一个 operator> 可以用一个类型为 X object(对象)和一个 int(因为 10 int 类型)来调用。这个 operator> 不需要取得一个类型 X 的参数,因为它可以取得一个类型 Y 的参数,只要在类型 X objects(对象)和类型 Y objects(对象)之间有一个 implicit conversion(隐式转型)就可以了!

  类似地,T 支持 operator!= 也是没有必要的,因为如果 operator!= 取得一个类型 X objects(对象)和一个类型 Y objects(对象)是可接受的一样。只要 T 能转型为 X,而 someNastyWidget 的类型能够转型为 Y,对 operator!= 的调用就是合法的。

 (此处的分析没有考虑 operator&& 被重载的可能性,这会将上面的表达式的含义从与转换到某些大概完全不同的东西。)

 implicit interfaces(隐式接口)简单地由一套 valid expressions(合法表达式)构成。这些表达式自身看起来可能很复杂,但是它们施加的约束通常是简单易懂的。例如,给出这个条件,
if (w.size() > 10 && w != someNastyWidget) ...

 关于 functions sizeoperator> operator&& operator!= 上的约束很难说出更多的东西,但是要识别出整个表达式的约束是非常简单的。一个 if 语句的条件部分必须是一个 boolean expression(布尔表达式),所以不管 "w.size() > 10 && w != someNastyWidget" 所产生的类型涉及到的精确类型,它必须与 bool 兼容。这就是 template(模板)doProcessing 施加于它的 type parameter(类型参数)T 之上的 implicit interface(隐式接口)的一部分。被 doProcessing 需要的 interface(接口)的其余部分是 copy constructor(拷贝构造函数),normalize swap 的调用对于类型 T objects(对象)来说必须是合法的。

 implicit interface(隐式接口)对 template(模板)的 parameters(参数)施加的影响正像 explicit interfaces(显式接口)对一个 class(类)的 objects(对象)施加的影响,而且这两者都在编译期间被检查。正像不能用与它的 class(类)提供的 explicit interface(显式接口)矛盾的方法使用 object(对象)(代码无法编译)一样,除非一个 object(对象)支持 template(模板)所需要的 implicit interface(隐式接口),否则就不能在一个 template(模板)中试图使用这个 object(对象)(代码还是无法编译)。

  Things to Remember
  ·classes(类)和 templates(模板)都支持 interfaces(接口)和 polymorphism(多态)。
  ·对于 classes(类),interfaces(接口)是 explicit(显式)的并以 function signatures(函数识别特征)为中心的。polymorphism(多态性)通过 virtual functions(虚拟函数)出现在运行期。
  ·对于 template parameters(模板参数),interfaces(接口)是 implicit(隐式)的并基于 valid expressions(合法表达式)。polymorphism(多态性)通过 template instantiation(模板实例化)和 function overloading resolution(函数重载解析)出现在编译期。
 
内容概要:本文设计了一种基于PLC的全自动洗衣机控制系统内容概要:本文设计了一种,采用三菱FX基于PLC的全自动洗衣机控制系统,采用3U-32MT型PLC作为三菱FX3U核心控制器,替代传统继-32MT电器控制方,提升了型PLC作为系统的稳定性与自动化核心控制器,替代水平。系统具备传统继电器控制方高/低水,实现洗衣机工作位选择、柔过程的自动化控制/标准洗衣模切换。系统具备高、暂停加衣、低水位选择、手动脱水及、标准两种蜂鸣提示等功能洗衣模,支持,通过GX Works2软件编写梯形图程序,实现进洗衣过程中暂停添加水、洗涤、排水衣物,并增加了手动脱水功能、脱水等工序蜂鸣器提示的自动循环控制功能,提升了使用的,并引入MCGS组便捷性与灵活性态软件实现人机交互界面监控。控制系统通过GX。硬件设计包括 Works2软件进行主电路、PLC接梯形图编程线与关键元,完成了启动、进水器件选型,软件、正反转洗涤部分完成I/O分配、排水、脱、逻辑流程规划水等工序的逻辑及各功能模块梯设计,并实现了大形图编程。循环与小循环的嵌; 适合人群:自动化套控制流程。此外、电气工程及相关,还利用MCGS组态软件构建专业本科学生,具备PL了人机交互C基础知识梯界面,实现对洗衣机形图编程能力的运行状态的监控与操作。整体设计涵盖了初级工程技术人员。硬件选型、; 使用场景及目标:I/O分配、电路接线、程序逻辑设计及组①掌握PLC在态监控等多个方面家电自动化控制中的应用方法;②学习,体现了PLC在工业自动化控制中的高效全自动洗衣机控制系统的性与可靠性。;软硬件设计流程 适合人群:电气;③实践工程、自动化及相关MCGS组态软件与PLC的专业的本科生、初级通信与联调工程技术人员以及从事;④完成PLC控制系统开发毕业设计或工业的学习者;具备控制类项目开发参考一定PLC基础知识。; 阅读梯形图建议:建议结合三菱编程能力的人员GX Works2仿真更为适宜。; 使用场景及目标:①应用于环境与MCGS组态平台进行程序高校毕业设计或调试与运行验证课程项目,帮助学生掌握PLC控制系统的设计,重点关注I/O分配逻辑、梯形图与实现方法;②为工业自动化领域互锁机制及循环控制结构的设计中类似家电控制系统的开发提供参考方案;③思路,深入理解PL通过实际案例理解C在实际工程项目PLC在电机中的应用全过程。控制、时间循环、互锁保护、手动干预等方面的应用逻辑。; 阅读建议:建议结合三菱GX Works2编程软件MCGS组态软件同步实践,重点理解梯形图程序中各环节的时序逻辑与互锁机制,关注I/O分配与硬件接线的对应关系,并尝试在仿真环境中调试程序以加深对全自动洗衣机控制流程的理解
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值