原子操作


若干汇编语言指令都具有“读-修改-写”特点 —— 也就是说,它们访问存储器单元两次,第一次读原值,第二次写新值。

假定运行在两个CPU上的两个内核控制路径试图通过执行非原子操作来同时“读-修改-写”同一存储器单元,如n++。首先,两个CPU都试图读同一单元,比如n=5。但是存储器仲裁器(对访问RAM芯片的操作进行串行化的硬件电路)插手,只允许其中的一个访问而让另一个延迟。然而,当第一个读操作已经完成后得到的是n=5,延迟的CPU从那个存储器单元正好读到同一个值(n=5)。然后,两个CPU都试图向那个存储器单元写一新值。总线存储器访问再一次被存储器仲裁器串行化,第一次n++为6,第二次n++还是6(因为他的CPU中寄存器保留的n得值仍然是5),最终,两个写操作都成功。但是,全局的结果是不对的,因为两个CPU向内存写入同一值(n=6)。因此,两个交错的“读-修改-写”操作成了一个单独的操作。

避免由于“读-修改-写”指令引起的竞争条件的最容易的办法,就是确保这样的操作在芯片级是原子的。
任何一个这样的操作都必须以单个指令执行,中间不能中断,且避免其他的CPU访问同一存储器单元。这些很小的原子操作(atomic operations)可以建立在其他更灵活机制的基础之上以创建临界区。

让我们来看看80x86指令的特点:
  1、进行零次或一次对齐内存访问的汇编指令是原子的。
  2、如果在读操作之后、写操作之前没有其他处理器占用内存总线,那么从内存中读取数据、更新数据并把更新后的数据写回内存中的这些“读-修 改-写”汇编语言指令(例如inc或dec)是原子的(注意,这里就会有竞争条件了,考虑到如果写操作之前突然有其他处理器占用内存总线)。当然,在单处理器系统中,永远都不会发生内存总线窃用的情况。
   3、操作码前缀是lock字节(Oxf0)的“读-修改-写”汇编语言指令即使在多处理器系统中也是原子的(与第2条对比)。当控制单元检测到这个前缀时,就“锁定”内存总线,直到这条指令执行完成为止。因此,当加锁的指令执行时,其他处理器不能访问这个内存单元。
   4、操作码前缀是一个rep字节(0xf2,Oxf3)的汇编语言指令不是原子的,这条指令强行让控制单元多次重复执行相同的指令。控制单元在执行新的循环之前要检查挂起的中断。

因此,在你编写C代码程序时,并不能保证编译器会为a=a+1或甚至像a++这样的操作使用一个原子指令。因此,Linux内核提供了一个专门的atomic_t类型(一个原子访问计数器)和一些专门的函数和宏,这些函数和宏作用于atomic_t类型的变量,并当作单独的、原子的汇编语言指令来使用。在多处理器系统中,每条这样的指令都有一个lock字节的前缀(LOCK_PREFIX)。 C编译器中还有一个关键字叫做volatile,它起一个避免指令乱序的作用,下一讲内存壁垒中会提到。

typedef struct { volatile int counter; } atomic_t;

下面,我们就来专门讲解这些函数和宏,其中的v就是atomic_t类型,而i就是一个简单的int数字:

atomic_read(v):
返回 v:
#define atomic_read(v)        ((v)->counter)

atomic_set(v,i):
将 v 置为 i:
#define atomic_set(v,i)        (((v)->counter) = (i))

atomic_add(i,v):
给 v 增加 i:
static __inline__ void atomic_add(int i, atomic_t *v)
{
    __asm__ __volatile__(
        LOCK_PREFIX "addl %1,%0"
        :"+m" (v->counter)
        :"ir" (i));
}

atomic_sub(i,v)    :
从 v 中减去 i:
static __inline__ void atomic_sub(int i, atomic_t *v)
{
    __asm__ __volatile__(
        LOCK_PREFIX "subl %1,%0"
        :"+m" (v->counter)
        :"ir" (i));
}

atomic_sub_and_test(i, v):
从 v 中减去 i,如果结果为0,则返回1,否则,返回0
static __inline__ int atomic_sub_and_test(int i, atomic_t *v)
{
    unsigned char c;

    __asm__ __volatile__(
        LOCK_PREFIX "subl %2,%0; sete %1"
        :"+m" (v->counter), "=qm" (c)
        :"ir" (i) : "memory");
    return c;
}

atomic_inc(v):
把1加到 v:
static __inline__ void atomic_inc(atomic_t *v)
{
    __asm__ __volatile__(
        LOCK_PREFIX "incl %0"
        :"+m" (v->counter));
}

atomic_dec(v):
从 v 减 1:
static __inline__ void atomic_dec(atomic_t *v)
{
    __asm__ __volatile__(
        LOCK_PREFIX "decl %0"
        :"+m" (v->counter));
}

atomic_dec_and_test(v):
从 v 减 1,如果结果为0,则返回1;否则,返回0:
static __inline__ int atomic_dec_and_test(atomic_t *v)
{
    unsigned char c;

    __asm__ __volatile__(
        LOCK_PREFIX "decl %0; sete %1"
        :"+m" (v->counter), "=qm" (c)
        : : "memory");
    return c != 0;
}

atomic_inc_and_test(v):
把 1 加到 v,如果结果为0,则返回1;否则,返回0:
static __inline__ int atomic_inc_and_test(atomic_t *v)
{
    unsigned char c;

    __asm__ __volatile__(
        LOCK_PREFIX "incl %0; sete %1"
        :"+m" (v->counter), "=qm" (c)
        : : "memory");
    return c != 0;
}

atomic_add_negative(i, v):
把 I 加到 v,如果结果为负,则返回1;否则,返回0:
static __inline__ int atomic_add_negative(int i, atomic_t *v)
{
    unsigned char c;

    __asm__ __volatile__(
        LOCK_PREFIX "addl %2,%0; sets %1"
        :"+m" (v->counter), "=qm" (c)
        :"ir" (i) : "memory");
    return c;
}

atomic_inc_return(v):
把1加到 v,返回 v 的新值:
#define atomic_inc_return(v)  (atomic_add_return(1,v))

atomic_dec_return(v):
从 v 减1,返回 v 的新值:
#define atomic_dec_return(v)  (atomic_sub_return(1,v))

atomic_add_return(i, v):
把i加到 *v,返回 *v 的新值:
static __inline__ int atomic_add_return(int i, atomic_t *v)
{
    int __i;
#ifdef CONFIG_M386
    unsigned long flags;
    if(unlikely(boot_cpu_data.x86==3))
        goto no_xadd;
#endif
    /* Modern 486+ processor */
    __i = i;
    __asm__ __volatile__(
        LOCK_PREFIX "xaddl %0, %1;"
        :"=r"(i)
        :"m"(v->counter), "0"(i));
    return i + __i;

#ifdef CONFIG_M386
no_xadd: /* Legacy 386 processor */
    local_irq_save(flags);
    __i = atomic_read(v);
    atomic_set(v, i + __i);
    local_irq_restore(flags);
    return i + __i;
#endif
}

atomic_sub_return(i, v):
从 *v 减i,返回 *v 的新值:
static __inline__ int atomic_sub_return(int i, atomic_t *v)
{
    return atomic_add_return(-i,v);
}

另一类原子函数操作作用于位掩码,这些函数稍微复杂了点,我们就不详细说明了。
test_bit(nr, addr):返回addr的第nr位的值
set_bit(nr, addr):设置addr的第nr位
clear_bit(nr, addr):清addr的第nr位
change_bit(nr, addr):转换addr的第nr位


test_and_set_bit(nr, addr):设置addr的第nr位,并返回它的原值
test_and_clear_bit(nr, addr):清addr的第nr位,并返回它的原值
test_and_change_bit(nr, addr):转换addr的第nr位,并返回它的原值
atomic_clear_mask(mask, addr):清mask指定的addr的所有位
atomic_set_mask(mask, addr):设置mask指定的addr的所有位

 

asm/atomic.h

asm/bitops.h

安全帽与口罩检测数据集 一、基础信息 数据集名称:安全帽与口罩检测数据集 图片数量: - 训练集:1690张图片 - 验证集:212张图片 - 测试集:211张图片 - 总计:2113张实际场景图片 分类类别: - HelmetHelmet:戴安全帽的人员,用于安全防护场景的检测。 - personwithmask:戴口罩的人员,适用于公共卫生监测。 - personwith_outmask:未戴口罩的人员,用于识别未遵守口罩佩戴规定的情况。 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于实际监控和场景采集,细节清晰。 二、适用场景 工业安全监控系统开发: 数据集支持目标检测任务,帮助构建自动检测人员是否佩戴安全帽的AI模型,适用于建筑工地、工厂等环境,提升安全管理效率。 公共卫生管理应用: 集成至公共场所监控系统,实时监测口罩佩戴情况,为疫情防控提供自动化支持,辅助合规检查。 智能安防与合规检查: 用于企业和机构的自动化安全审计,减少人工干预,提高检查准确性和响应速度。 学术研究与AI创新: 支持计算机视觉目标检测领域的研究,适用于安全与健康相关的AI模型开发和论文发表。 三、数据集优势 精准标注与实用性: 每张图片均经过标注,边界框定位准确,类别定义清晰,确保模型训练的高效性和可靠性。 场景多样性与覆盖性: 包含安全帽和口罩相关类别,覆盖工业、公共场所以及多种实际环境,样本丰富,提升模型的泛化能力和适应性。 任务适配性强: 标注兼容主流深度学习框架(如YOLO),可直接用于目标检测任务,便于快速集成和部署。 实际应用价值突出: 专注于工业安全和公共健康领域,为自动化监控、合规管理以及疫情防护提供可靠数据支撑,具有较高的社会和经济价值。
内容概要:本文围绕FOC电机控制代码实现与调试技巧在计算机竞赛中的应用,系统阐述了从基础理论到多场景优化的完整技术链条。文章深入解析了磁链观测器、前馈控制、代码可移植性等关键概念,并结合FreeRTOS多任务调度、滑动窗口滤波、数据校验与热仿真等核心技巧,展示了高实时性与稳定性的电机控制系统设计方法。通过服务机器人、工业机械臂、新能源赛车等典型应用场景,论证了FOC在复杂系统协同中的关键技术价值。配套的千行级代码案例聚焦分层架构与任务同步机制,强化工程实践能力。最后展望数字孪生、低代码平台与边缘AI等未来趋势,体现技术前瞻性。; 适合人群:具备嵌入式开发基础、熟悉C语言与实时操作系统(如FreeRTOS)的高校学生或参赛开发者,尤其适合参与智能车、机器人等综合性竞赛的研发人员(经验1-3年为佳)。; 使用场景及目标:① 掌握FOC在多任务环境下的实时控制实现;② 学习抗干扰滤波、无传感器控制、跨平台调试等竞赛实用技术;③ 提升复杂机电系统的问题分析与优化能力; 阅读建议:此资源强调实战导向,建议结合STM32等开发平台边学边练,重点关注任务优先级设置、滤波算法性能权衡与观测器稳定性优化,并利用Tracealyzer等工具进行可视化调试,深入理解代码与系统动态行为的关系。
【场景削减】拉丁超立方抽样方法场景削减(Matlab代码实现)内容概要:本文介绍了基于拉丁超立方抽样(Latin Hypercube Sampling, LHS)方法的场景削减技术,并提供了相应的Matlab代码实现。该方法主要用于处理不确定性问题,特别是在电力系统、可再生能源等领域中,通过对大量可能场景进行高效抽样并削减冗余场景,从而降低计算复杂度,提高优化调度等分析工作的效率。文中强调了拉丁超立方抽样在保持样本代表性的同时提升抽样精度的优势,并结合实际科研背景阐述了其应用场景与价值。此外,文档还附带多个相关科研方向的Matlab仿真案例和资源下载链接,涵盖风电、光伏、电动汽车、微电网优化等多个领域,突出其实用性和可复现性。; 适合人群:具备一定Matlab编程基础,从事电力系统、可再生能源、优化调度等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于含高比例可再生能源的电力系统不确定性建模;②用于风电、光伏出力等随机变量的场景生成与削减;③支撑优化调度、风险评估、低碳运行等研究中的数据预处理环节;④帮助科研人员快速实现LHS抽样与场景削减算法,提升仿真效率与模型准确性。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,理解拉丁超立方抽样的原理与实现步骤,并参考附带的其他科研案例拓展应用思路;同时注意区分场景生成与场景削减两个阶段,确保在实际项目中正确应用该方法。
道路坑洞目标检测数据集 一、基础信息 • 数据集名称:道路坑洞目标检测数据集 • 图片数量: 训练集:708张图片 验证集:158张图片 总计:866张图片 • 训练集:708张图片 • 验证集:158张图片 • 总计:866张图片 • 分类类别: CirEllPothole CrackPothole IrrPothole • CirEllPothole • CrackPothole • IrrPothole • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据格式:图片为常见格式(如JPEG/PNG),来源于相关数据采集。 二、适用场景 • 智能交通监控系统开发:用于自动检测道路坑洞,实现实时预警和维护响应,提升道路安全。 • 自动驾驶与辅助驾驶系统:帮助车辆识别道路缺陷,避免潜在事故,增强行驶稳定性。 • 城市基础设施管理:用于道路状况评估和定期检查,优化维护资源分配和规划。 • 学术研究与创新:支持计算机视觉在公共安全和交通领域的应用,推动算法优化和模型开发。 三、数据集优势 • 精准标注与类别覆盖:标注高质量,包含三种常见坑洞类型(CirEllPothole、CrackPothole、IrrPothole),覆盖不同形态道路缺陷。 • 数据多样性:数据集涵盖多种场景,提升模型在复杂环境下的泛化能力和鲁棒性。 • 任务适配性强:标注兼容主流深度学习框架(如YOLO),可直接用于目标检测任务,支持快速模型迭代。 • 实际应用价值:专注于道路安全与维护,为智能交通和城市管理提供可靠数据支撑,促进效率提升。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值