关于DM的一点总结

本文分享了使用IBM Intelligent Miner进行电信客户数据挖掘的经验,强调了数据预处理的重要性,并讨论了挖掘工具的选择、挖掘模型的理解、数据规模的影响以及与业务人员沟通的必要性。

(转自:http://www.chinabi.net/blog/user1/105/1515.html)


用IBM的IM做过一段时间的电信客户挖掘
由于时间不是很长,做的挖掘模型效果还有待提高
应朋友要求简单总结几点(水平有限,也希望经验丰富的朋友给些建议):

1、挖掘工具主要分商业数据产品和集成数据挖掘产品两类:商业数据挖掘产品具有代表性的SPSS Clementine,SAS Enterprise Miner,IBM Intelligent Miner;SQL Server2005属于集成了挖掘模型类的,挖掘算法与SQL数据库产品密不可分,你甚至可以把自己实现的数据挖掘算法跟SQL进行集成,Oracle也类似,DB2的BI功能没怎么用,不是很清楚。

2、数据挖掘过程的重点绝对是数据预处理,一般认为预处理工作会占60%-80%时间不等,为什么预处理会如此重要,大家都知道garbage in garbage out的道理,这在整个BI领域都是成立的。商业智能-既然提到智能层面,那就不只是展现,还要做分析和预测(不过现阶段很多BI项目确实只是在做展现,最多加点多维分析)。BI概念提出之初就是辅助战略决策的产物,当然向操作型BI发展的趋势这里不做过多介绍,经验告诉我们战略决策是基于历史和别人现成经验的,怎样从历史数据的展现和分析过程中得到有用知识,不管你是通过报表或多维分析得到企业各领域指标相关性,还是通过挖掘模型的实施来根据历史数据预测企业未来发展,这一切都是基于企业历史数据的。没有数据质量基础的保证,展现得多华丽的走势图表都是垃圾。
(1)如果是基于数据仓库或者数据集市的挖掘,那么可直接在仓库或者数据集市中建立挖掘模型源输入(也可叫临时宽表,这个表是根据挖掘业务需求对其他维度表属性的一个综合提取,合适的时间窗口在这里是个要考虑的关键因素);如果是没有仓库或集市这一数据基础,那么就需要一个针对挖掘业务需求字段属性的简单ETL过程了。
(2)上面只是挖掘源数据的建立,接下来才进入数据预处理的核心阶段,由于源数据(临时宽表)里面很多数据是有偏差的,比如空值,错误值,异常值等...这就需要根据每个业务字段属性的规范标准来进行处理,这步是一个繁杂的工程,数据预处理技术各式各样,比较有代表性的有数据清理、数据集成、数据变换、数据归约、离散化和概念分层等等;而且针对不同字段数据特征,不同的数据处理技术往往会导致挖掘的结果差异。虽然商业数据挖掘产品都提供了常用的数据预处理技术,但要用好,除了需要一些统计学,数据分布等知识外,对该字段对应的业务理解和挖掘过程的数据预处理方法差异的经验积累才是关键因素。就拿属性归约来将,很多挖掘产品有因子分析工具,貌似可以自动对所有属性字段做一个挖掘相关重要性因素从大大小的排序,但这也不能全信,毕竟工具是死的,它只能从数据本身的数理特征去理解和自动分析,例如有些业务字段可能数据分布的特征不符合因子分析的重要性条件,但对该数据挖掘模型贡献确是很大的。这样的情况虽说不多,却是值得注意的地方。

3、经过上面两步,挖掘模型数据输入算是初步建立起来了。接下来需要对所应用的挖掘模型有个初步理解,有朋友赞成挖掘模型是“黑匣子”的观点,有朋友赞成需要对挖掘模型的专业理解。我保持中庸的观点:如果不是做算法研究的朋友,只是做挖掘模型应用,却需要对挖掘模型算法有专业理解是不现实的,毕竟公司讲的效益和效率,不像是在实验室,有的是时间让你查资料,折腾进而对模型有个深入全面的理解;但完全黑匣子也是不妥的,一个对该挖掘模型完全不理解的人,指望能利用该模型挖掘出有用知识是不可能的。一是他不可能对挖掘结果有很好的理解;二是参数的调整是最大障碍,挖掘过程本来就是迭代过程,对算法完全不了解的参数设置乱设一通就指望得出较优模型更是天方夜潭。个人认为对挖掘模型大致原理是有必要了解的,再就是每个参数的范围及所代表的意义和对模型所起作用也是需要了解的。

4、数据规模也是个关键因素,训练数据,测试数据,验证数据?训练数据是选连续五个月加起来10万条记录,还是选连续三个月加起来6万条记录;测试数据是选两个月加起来2万条记录还是只选一个月?如果一个月数据就有几十万条记录,那么采取那种方式抽取几万条记录,是随机取还是写个简单选择算法?10万条记录挖掘模型跑了一晚上才出来结果,用5万条记录跑出来效果跟用10万条记录的差异大不大?抽取几千条记录完全可以用统计模型实现,为什么还要抽取上万记录用复杂的挖掘模型呢?这些因素很难说有个统一标准,相信很多人还是相信自己的经验多一点,像我等菜鸟们也只能指望经验丰富的老鸟们多出几本数据挖掘指南了。

5、不管是需求分析还是挖掘模型的评估及应用,和业务人员和决策者们的充分沟通交流是完全必要的。闭们造车的数据挖掘模型是脆弱的...



下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值