浮点数在内存中的存储格式

本文详细解析了浮点数在计算机内存中的存储方式,包括IEEE-754标准下的浮点数构成及其转换方法。

浮点数:
    浮点型变量在计算机内存中占用4字节(Byte),即32-bit。遵循IEEE-754格式标准。一个浮点数由2部分组成:底数m 和指数e。 ±mantissa × 2exponent
(注意,公式中的mantissa 和 exponent使用二进制表示)
   底数部分 使用2进制数来表示此浮点数的实际值。
   指数部分 占用8-bit的二进制数,可表示数值范围为0-255。
   指数应可正可负,所以IEEE规定,此处算出的次方须减去127才是真正的指数。所以float的指数可从 -126到128
   底数部分实际是占用24-bit的一个值,由于其最高位始终为 1 ,所以最高位省去不存储,在存储中只有23-bit。
   到目前为止, 底数部分 23位加上指数部分 8位使用了31位。那么前面说过,float是占用4个字节即32-bit,那么还有一位是干嘛用的呢? 还有一位,其实就是4字节中的最高位,用来指示浮点数的正负,当最高位是1时,为负数,最高位是0时,为正数。

   浮点数据就是按下表的格式存储在4个字节中:

   Address+0 Address+1 Address+2 Address+3

   Contents SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
 S: 表示浮点数正负,1为负数,0为正数
 E: 指数加上127后的值的二进制数
 M: 24-bit的底数(只存储23-bit)

   注意:这里有个特例,浮点数为0时,指数和底数都为0,但此前的公式不成立。因为2的0次方为1,所以,0是个特例。当然,这个特例也不用认为去干扰,编译器会自动去识别。
   举例1:计算机存储中的二进制数如何转换成实际浮点数
   通过上面的格式,我们下面举例看下-12.5在计算机中存储的具体数据:
Address+0 Address+1 Address+2 Address+3 Contents 0xC1 0x48 0x00 0x00
   接下来我们验证下上面的数据表示的到底是不是-12.5,从而也看下它的转换过程。 

   由于浮点数不是以直接格式存储,他有几部分组成,所以要转换浮点数,首先要把各部分的值分离出来。

   Address+0 Address+1 Address+2 Address+3

   格式 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

   二进制 11000001 01001000 00000000 00000000

   16进制 C1 48 00 00

 可见:

S: 为1,是个负数。

E:为 10000010 转为10进制为130,130-127=3,即实际指数部分为3.

M:为 10010000000000000000000。这里,在底数左边省略存储了一个1,使用实际底数表示为 1.10010000000000000000000

   到此,我们吧三个部分的值都拎出来了,现在,我们通过指数部分E的值来调整底数部分M的值。调整方法为:如果指数E为负数,底数的小数点向左移,如果指数E为正数,
   底数的小数点向右移。小数点移动的位数由指数E的绝对值决定。

   这里,E为正3,使用向右移3为即得:

   1100.10000000000000000000

   至次,这个结果就是12.5的二进制浮点数,将他换算成10进制数就看到12.5了,如何转换,看下面:

   小数点左边的1100 表示为 (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20), 其结果为 12 。

   小数点右边的 .100… 表示为 (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + ... ,其结果为.5 。

   以上二值的和为12.5, 由于S 为1,使用为负数,即-12.5 。所以,16进制 0XC1480000 是浮点数-12.5 。
举例2:
浮点数装换成计算机存储格式中的二进制数。
   举例将 17.625换算成 float型。

   首 先,将17.625换算成二进制位:10001.101 ( 0.625 = 0.5+0.125, 0.5即 1/2, 0.125即1/8 如果不会将小数部分转换成二进制,请参考其他书籍)
   再将 10001.101 向左移,直到小数点前只剩一位成了 1.0001101 x 2的4次方(因为左移了4位)。此时我们的底数M和指数E就出来了:
   底数部分M,因为小数点前必为1,所以IEEE规定只记录小数点后的就好,所以此处底数为 0001101 。

   指数部分E,实际为4,但须加上127,固为131,即二进制数 10000011 符号部分S,由于是正数,所以S为0.
综上所述,17.625的 float 存储格式就是:

 0 10000011 00011010000000000000000

 转换成16进制:0x41 8D 00 00

 所以,一看,还是占用了4个字节。


原文地址:http://blog.chinaunix.net/uid-8996150-id-2011648.html

数据集介绍:电力线目标检测数据集 一、基础信息 数据集名称:电力线目标检测数据集 图片数量: 训练集:2898张图片 验证集:263张图片 测试集:138张图片 总计:3299张图片 分类类别: 类别ID: 0(电力线) 标注格式: YOLO格式,包含对象标注信息,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于空中拍摄或监控视觉。 二、适用场景 电力设施监控与巡检: 数据集支持目标检测任务,帮助构建能够自动识别和定位电力线的AI模型,用于无人机或固定摄像头巡检,提升电力设施维护效率和安全性。 能源与公用事业管理: 集成至能源管理系统中,提供实时电力线检测功能,辅助进行风险 assessment 和预防性维护,优化能源分配。 计算机视觉算法研究: 支持目标检测技术在特定领域的应用研究,促进AI在能源和公用事业行业的创新与发展。 专业培训与教育: 数据集可用于电力行业培训课程,作为工程师和技术人员学习电力线检测与识别的重要资源。 三、数据集优势 标注精准可靠: 每张图片均经过专业标注,确保电力线对象的定位准确,适用于高精度模型训练。 数据多样性丰富: 包含多种环境下的电力线图片,如空中视角,覆盖不同场景条件,提升模型的泛化能力和鲁棒性。 任务适配性强: 标注格式兼容YOLO等主流深度学习框架,便于快速集成和模型开发,支持目标检测任务的直接应用。 实用价值突出: 专注于电力线检测,为智能电网、自动化巡检和能源设施监控提供关键数据支撑,具有较高的行业应用价值。
【弹簧阻尼器】基于卡尔曼滤波弹簧质量阻尼器系统噪声测量实时状态估计研究(Matlab代码实现)内容概要:本文围绕“基于卡尔曼滤波的弹簧质量阻尼器系统噪声测量与实时状态估计”展开研究,利用Matlab代码实现对系统状态的精确估计。重点在于应用卡尔曼滤波技术处理系统中存在的噪声干扰,提升对弹簧质量阻尼器系统动态行为的实时观测能力。文中详细阐述了系统建模、噪声特性分析及卡尔曼滤波算法的设计与实现过程,展示了滤波算法在抑制测量噪声、提高状态估计精度方面的有效性。同时,该研究属于更广泛的信号处理与状态估计技术应用范畴,适用于复杂动态系统的监控与控制。; 适合人群:具备一定控制系统理论基础和Matlab编程经验的高校研究生、科研人员及工程技术人员,尤其适合从事动态系统建模、状态估计与滤波算法研究的相关人员。; 使用场景及目标:①应用于机械、航空航天、自动化等领域中对振动系统状态的高精度实时估计;②为噪声环境下的传感器数据融合与状态预测提供算法支持;③作为卡尔曼滤波算法在实际物理系统中应用的教学与科研案例。; 阅读建议:建议读者结合Matlab代码实践,深入理解系统建模与滤波器设计的关键步骤,关注噪声建模与滤波参数调优对估计性能的影响,并可进一步拓展至扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)在非线性系统中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值