含有 ax+bax+bax+b 的积分
∫dxax+b=1aln∣ax+b∣+C\int \frac{dx}{ax+b} = \frac{1}{a}\ln |ax+b|+C∫ax+bdx=a1ln∣ax+b∣+C
∫(ax+b)μdx=1a(μ+1)(ax+b)μ+1+C\int (ax+b)^{\mu} dx=\frac{1}{a(\mu+1)}(ax+b)^{\mu+1}+C∫(ax+b)μdx=a(μ+1)1(ax+b)μ+1+C
∫xax+bdx=1a2(ax+b−bln∣ax+b∣)+C\int \frac{x}{ax+b}dx=\frac{1}{a^{2}}(ax+b-b\ln|ax+b|)+C∫ax+bxdx=a21(ax+b−bln∣ax+b∣)+C
∫x2ax+bdx=1a3[12(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C\int \frac{x^{^2}}{ax+b}dx=\frac{1}{a^{3}}[\frac{1}{2}(ax+b)^{2}-2b(ax+b)+b^{2}\ln|ax+b|]+C∫ax+bx2dx=a31[21(ax+b)2−2b(ax+b)+b2ln∣ax+b∣]+C
∫dxx(ax+b)=−1bln∣ax+bx∣+C\int \frac{dx}{x(ax+b)}=-\frac{1}{b}\ln|\frac{ax+b}{x}|+C∫x(ax+b)dx=−b1ln∣xax+b∣+C
∫dxx2(ax+b)=−1bx+ab2ln∣ax+bx∣+C\int \frac{dx}{x^{2}(ax+b)}=-\frac{1}{bx}+\frac{a}{b^{2}}\ln|\frac{ax+b}{x}|+C∫x2(ax+b)dx=−bx1+b2aln∣xax+b∣+C
∫x(ax+b)2dx=1a2(ln∣ax+b∣+bax+b)+C\int \frac{x}{(ax+b)^{2}}dx=\frac{1}{a^{2}}(\ln|ax+b|+\frac{b}{ax+b})+C∫(ax+b)2xdx=a21(ln∣ax+b∣+ax+bb)+C
∫x2(ax+b)2dx=1a3(ax+b−2bln∣ax+b∣−b2ax+b)+C\int \frac{x^2}{(ax+b)^2}dx=\frac{1}{a^{3}}(ax+b-2b\ln|ax+b|-\frac{b^{2}}{ax+b})+C∫(ax+b)2x2dx=a31(ax+b−2bln∣ax+b∣−ax+bb2)+C
∫dxx(ax+b)2=1b(ax+b)−1b2ln∣ax+bx∣+C\int \frac{dx}{x(ax+b)^{2}}=\frac{1}{b(ax+b)}-\frac{1}{b^{2}}\ln|\frac{ax+b}{x}|+C∫x(ax+b)2dx=b(ax+b)1−b21ln∣xax+b∣+C
含有 ax+b\sqrt{ax+b}ax+b 的积分
∫ax+bdx=23a(ax+b)3+C\int \sqrt{ax+b}dx=\frac{2}{3a}\sqrt{(ax+b)^{3}}+C∫ax+bdx=3a2(ax+b)3+C
∫xax+bdx=215a2(3ax−2b)(ax+b)3+C\int x\sqrt{ax+b}dx=\frac{2}{15a^{2}}(3ax-2b)\sqrt{(ax+b)^{3}}+C∫xax+bdx=15a22(3ax−2b)(ax+b)3+C
∫x2ax+bdx=2105a3(15a2x2−12abx+8b2)(ax+b)3+C\int x^{2}\sqrt{ax+b}dx=\frac{2}{105a^{3}}(15a^{2}x^{2}-12abx+8b^{2})\sqrt{(ax+b)^{3}}+C∫x2ax+bdx=105a32(15a2x2−12abx+8b2)(ax+b)3+C
∫xax+bdx=23a2(ax−2b)ax+b+C\int \frac{x}{\sqrt{ax+b}}dx=\frac{2}{3a^{2}}(ax-2b)\sqrt{ax+b}+C∫ax+bxdx=3a22(ax−2b)ax+b+C
∫x2ax+bdx=215a3(3a2x2−4abx+8b2)ax+b+C\int \frac{x^{2}}{\sqrt{ax+b}}dx=\frac{2}{15a^{3}}(3a^{2}x^{2}-4abx+8b^{2})\sqrt{ax+b}+C∫ax+bx2dx=15a32(3a2x2−4abx+8b2)ax+b+C
∫dxxax+b={1bln∣ax+b−bax+b+b∣+C(b>0)2−barctanax+b−b+C(b<0)\int \frac{dx}{x\sqrt{ax+b}}=\left\{ \begin{aligned} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}} \right| + C \qquad (b>0) \\ \frac{2}{\sqrt{-b}}\arctan \sqrt{\frac{ax+b}{-b}}+C \qquad (b<0) \end{aligned} \right.∫xax+bdx=⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧b1ln∣∣∣∣∣ax+b+bax+b−b∣∣∣∣∣+C(b>0)−b2arctan−bax+b+C(b<0)
∫dxx2ax+b=−ax+bbx−a2b∫dxxax+b\int \frac{dx}{x^{2}\sqrt{ax+b}}=-\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}\int \frac{dx}{x\sqrt{ax+b}}∫x2ax+bdx=−bxax+b−2ba∫xax+bdx
∫ax+bxdx=2ax+b+b∫dxxax+b\int \frac{\sqrt{ax+b}}{x}dx=2\sqrt{ax+b}+b\int\frac{dx}{x\sqrt{ax+b}}∫xax+bdx=2ax+b+b∫xax+bdx
∫ax+bx2dx=−ax+bx+a2∫dxxax+b\int \frac{\sqrt{ax+b}}{x^{2}}dx=-\frac{\sqrt{ax+b}}{x}+\frac{a}{2}\int \frac{dx}{x\sqrt{ax+b}}∫x2ax+bdx=−xax+b+2a∫xax+bdx
含有 x2±a2x^2 \pm a^2x2±a2 的积分
∫dxx2+a2=1aarctanxa+C\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan \frac{x}{a} + C∫x2+a2dx=a1arctanax+C
∫dx(x2+a2)n=x2(n−1)a2(x2+a2)n−1+2n−32(n−1)a2∫dx(x2+a2)n−1\int \frac{dx}{(x^2+a^2)^n} = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{(x^2+a^2)^{n-1}}∫(x2+a2)ndx=2(n−1)a2(x2+a2)n−1x+2(n−1)a22n−3∫(x2+a2)n−1dx
∫dxx2−a2=12aln∣x−ax+a∣+C\int \frac{dx}{x^2-a^2}=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C∫x2−a2dx=2a1ln∣x+ax−a∣+C
含有 ax2+b(a>0)ax^2+b\quad(a>0)ax2+b(a>0) 的积分
∫dxax2+b={1abarctanabx+C(b>0)12−abln∣ax−−bax+−b∣+C(b<0)\int \frac{dx}{ax^2+b}=\left\{ \begin{aligned} \frac{1}{\sqrt{ab}}\arctan\sqrt{\frac{a}{b}}x+C \qquad (b>0)\\ \frac{1}{2\sqrt{-ab}} \ln |\frac{\sqrt{a}x-\sqrt{-b}}{\sqrt{a}x+\sqrt{-b}}|+C \qquad (b<0) \end{aligned} \right.∫ax2+bdx=⎩⎪⎪⎪⎨⎪⎪⎪⎧ab1arctanbax+C(b>0)2−ab1ln∣ax+−bax−−b∣+C(b<0)
∫xax2+bdx=12aln∣ax2+b∣+C\int \frac{x}{ax^2+b}dx=\frac{1}{2a}\ln|ax^2+b|+C∫ax2+bxdx=2a1ln∣ax2+b∣+C
∫x2ax2+bdx=xa−ba∫dxax2+b\int \frac{x^2}{ax^2+b}dx=\frac{x}{a}-\frac{b}{a} \int \frac{dx}{ax^2+b}∫ax2+bx2dx=ax−ab∫ax2+bdx
∫dxx(ax2+b)=12blnx2∣ax2+b∣+C\int \frac{dx}{x(ax^2+b)}=\frac{1}{2b}\ln\frac{x^2}{|ax^2+b|}+C∫x(ax2+b)dx=2b1ln∣ax2+b∣x2+C