积分日记

含有 ax+bax+bax+b 的积分

∫dxax+b=1aln⁡∣ax+b∣+C\int \frac{dx}{ax+b} = \frac{1}{a}\ln |ax+b|+Cax+bdx=a1lnax+b+C

∫(ax+b)μdx=1a(μ+1)(ax+b)μ+1+C\int (ax+b)^{\mu} dx=\frac{1}{a(\mu+1)}(ax+b)^{\mu+1}+C(ax+b)μdx=a(μ+1)1(ax+b)μ+1+C

∫xax+bdx=1a2(ax+b−bln⁡∣ax+b∣)+C\int \frac{x}{ax+b}dx=\frac{1}{a^{2}}(ax+b-b\ln|ax+b|)+Cax+bxdx=a21(ax+bblnax+b)+C

∫x2ax+bdx=1a3[12(ax+b)2−2b(ax+b)+b2ln⁡∣ax+b∣]+C\int \frac{x^{^2}}{ax+b}dx=\frac{1}{a^{3}}[\frac{1}{2}(ax+b)^{2}-2b(ax+b)+b^{2}\ln|ax+b|]+Cax+bx2dx=a31[21(ax+b)22b(ax+b)+b2lnax+b]+C

∫dxx(ax+b)=−1bln⁡∣ax+bx∣+C\int \frac{dx}{x(ax+b)}=-\frac{1}{b}\ln|\frac{ax+b}{x}|+Cx(ax+b)dx=b1lnxax+b+C

∫dxx2(ax+b)=−1bx+ab2ln⁡∣ax+bx∣+C\int \frac{dx}{x^{2}(ax+b)}=-\frac{1}{bx}+\frac{a}{b^{2}}\ln|\frac{ax+b}{x}|+Cx2(ax+b)dx=bx1+b2alnxax+b+C

∫x(ax+b)2dx=1a2(ln⁡∣ax+b∣+bax+b)+C\int \frac{x}{(ax+b)^{2}}dx=\frac{1}{a^{2}}(\ln|ax+b|+\frac{b}{ax+b})+C(ax+b)2xdx=a21(lnax+b+ax+bb)+C

∫x2(ax+b)2dx=1a3(ax+b−2bln⁡∣ax+b∣−b2ax+b)+C\int \frac{x^2}{(ax+b)^2}dx=\frac{1}{a^{3}}(ax+b-2b\ln|ax+b|-\frac{b^{2}}{ax+b})+C(ax+b)2x2dx=a31(ax+b2blnax+bax+bb2)+C

∫dxx(ax+b)2=1b(ax+b)−1b2ln⁡∣ax+bx∣+C\int \frac{dx}{x(ax+b)^{2}}=\frac{1}{b(ax+b)}-\frac{1}{b^{2}}\ln|\frac{ax+b}{x}|+Cx(ax+b)2dx=b(ax+b)1b21lnxax+b+C

含有 ax+b\sqrt{ax+b}ax+b 的积分

∫ax+bdx=23a(ax+b)3+C\int \sqrt{ax+b}dx=\frac{2}{3a}\sqrt{(ax+b)^{3}}+Cax+bdx=3a2(ax+b)3+C

∫xax+bdx=215a2(3ax−2b)(ax+b)3+C\int x\sqrt{ax+b}dx=\frac{2}{15a^{2}}(3ax-2b)\sqrt{(ax+b)^{3}}+Cxax+bdx=15a22(3ax2b)(ax+b)3+C

∫x2ax+bdx=2105a3(15a2x2−12abx+8b2)(ax+b)3+C\int x^{2}\sqrt{ax+b}dx=\frac{2}{105a^{3}}(15a^{2}x^{2}-12abx+8b^{2})\sqrt{(ax+b)^{3}}+Cx2ax+bdx=105a32(15a2x212abx+8b2)(ax+b)3+C

∫xax+bdx=23a2(ax−2b)ax+b+C\int \frac{x}{\sqrt{ax+b}}dx=\frac{2}{3a^{2}}(ax-2b)\sqrt{ax+b}+Cax+bxdx=3a22(ax2b)ax+b+C

∫x2ax+bdx=215a3(3a2x2−4abx+8b2)ax+b+C\int \frac{x^{2}}{\sqrt{ax+b}}dx=\frac{2}{15a^{3}}(3a^{2}x^{2}-4abx+8b^{2})\sqrt{ax+b}+Cax+bx2dx=15a32(3a2x24abx+8b2)ax+b+C

∫dxxax+b={1bln⁡∣ax+b−bax+b+b∣+C(b&gt;0)2−barctan⁡ax+b−b+C(b&lt;0)\int \frac{dx}{x\sqrt{ax+b}}=\left\{ \begin{aligned} \frac{1}{\sqrt{b}} \ln \left| \frac{\sqrt{ax+b}-\sqrt{b}}{\sqrt{ax+b}+\sqrt{b}} \right| + C \qquad (b&gt;0) \\ \frac{2}{\sqrt{-b}}\arctan \sqrt{\frac{ax+b}{-b}}+C \qquad (b&lt;0) \end{aligned} \right.xax+bdx=b1lnax+b+bax+bb+C(b>0)b2arctanbax+b+C(b<0)

∫dxx2ax+b=−ax+bbx−a2b∫dxxax+b\int \frac{dx}{x^{2}\sqrt{ax+b}}=-\frac{\sqrt{ax+b}}{bx}-\frac{a}{2b}\int \frac{dx}{x\sqrt{ax+b}}x2ax+bdx=bxax+b2baxax+bdx

∫ax+bxdx=2ax+b+b∫dxxax+b\int \frac{\sqrt{ax+b}}{x}dx=2\sqrt{ax+b}+b\int\frac{dx}{x\sqrt{ax+b}}xax+bdx=2ax+b+bxax+bdx

∫ax+bx2dx=−ax+bx+a2∫dxxax+b\int \frac{\sqrt{ax+b}}{x^{2}}dx=-\frac{\sqrt{ax+b}}{x}+\frac{a}{2}\int \frac{dx}{x\sqrt{ax+b}}x2ax+bdx=xax+b+2axax+bdx

含有 x2±a2x^2 \pm a^2x2±a2 的积分

∫dxx2+a2=1aarctan⁡xa+C\int \frac{dx}{x^2+a^2} = \frac{1}{a} \arctan \frac{x}{a} + Cx2+a2dx=a1arctanax+C

∫dx(x2+a2)n=x2(n−1)a2(x2+a2)n−1+2n−32(n−1)a2∫dx(x2+a2)n−1\int \frac{dx}{(x^2+a^2)^n} = \frac{x}{2(n-1)a^2(x^2+a^2)^{n-1}} + \frac{2n-3}{2(n-1)a^2} \int \frac{dx}{(x^2+a^2)^{n-1}}(x2+a2)ndx=2(n1)a2(x2+a2)n1x+2(n1)a22n3(x2+a2)n1dx

∫dxx2−a2=12aln⁡∣x−ax+a∣+C\int \frac{dx}{x^2-a^2}=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+Cx2a2dx=2a1lnx+axa+C

含有 ax2+b(a&gt;0)ax^2+b\quad(a&gt;0)ax2+b(a>0) 的积分

∫dxax2+b={1abarctan⁡abx+C(b&gt;0)12−abln⁡∣ax−−bax+−b∣+C(b&lt;0)\int \frac{dx}{ax^2+b}=\left\{ \begin{aligned} \frac{1}{\sqrt{ab}}\arctan\sqrt{\frac{a}{b}}x+C \qquad (b&gt;0)\\ \frac{1}{2\sqrt{-ab}} \ln |\frac{\sqrt{a}x-\sqrt{-b}}{\sqrt{a}x+\sqrt{-b}}|+C \qquad (b&lt;0) \end{aligned} \right.ax2+bdx=ab1arctanbax+C(b>0)2ab1lnax+baxb+C(b<0)

∫xax2+bdx=12aln⁡∣ax2+b∣+C\int \frac{x}{ax^2+b}dx=\frac{1}{2a}\ln|ax^2+b|+Cax2+bxdx=2a1lnax2+b+C

∫x2ax2+bdx=xa−ba∫dxax2+b\int \frac{x^2}{ax^2+b}dx=\frac{x}{a}-\frac{b}{a} \int \frac{dx}{ax^2+b}ax2+bx2dx=axabax2+bdx

∫dxx(ax2+b)=12bln⁡x2∣ax2+b∣+C\int \frac{dx}{x(ax^2+b)}=\frac{1}{2b}\ln\frac{x^2}{|ax^2+b|}+Cx(ax2+b)dx=2b1lnax2+bx2+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值