在现代的数据交换和存储中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,备受青睐。它不仅易于阅读和理解,还可以灵活地表达和存储高维数据。本文将介绍如何在 Python 中操作 JSON 文件,实现数据的序列化和反序列化。
1. JSON 数据格式
JSON 格式采用键值对的方式表达信息。它的值可以是对象、数组、字符串、整数、浮点数、布尔型或空值。下面是一个 JSON 数据的例子:
- {
- "name": "kira",
- "age": 18,
- "hobby": ["唱歌", "吹牛"],
- "friends": [
- {"name": "刘德华"},
- {"name": "梁朝伟"}
- ]
- }
在实际工作中,我们可以根据需要扩展和定制这种数据格式,以适应不同的场景和业务需求。
2. Python 操作 JSON 文件
Python 提供了内置的 json 模块,用于解析和操作 JSON 数据。
2.1 JSON 反序列化为 Python 对象
将 JSON 数据反序列化为 Python 对象是常见的操作,可以利用 json.loads() 方法实现。
- import json
- json_str = '{"name":"kira","age":18}'
- print(json_str, type(json_str))
- load_data = json.loads(json_str)
- print(load_data, type(load_data))
运行结果:
- {"name":"kira","age":18} <class 'str'>
- {'name': 'kira', 'age': 18} <class 'dict'>
- 此外,如果需要从 JSON 文件中加载数据,可以使用 json.load() 方法。
- import json
- with open('kira.json', 'r', encoding='utf-8') as f:
- load_data = json.load(f)
- print(load_data, type(load_data))
运行结果:
- {'name': 'kira', 'age': 18, 'hobby': ['唱歌', '吹牛'], 'friends': [{'name': '刘德华'}, {'name': '梁朝伟'}]} <class 'dict'>
2.2 Python 序列化为 JSON
与反序列化相对应,Python 可以将对象序列化为 JSON 数据。json.dumps() 方法可以实现这一功能。
- import json
- data = {
- "name": "kira",
- "age": 18,
- "hobby": ["唱歌", "吹牛"],
- "friends": [
- {"name": "刘德华"},
- {"name": "梁朝伟"}
- ]
- }
- json_str = json.dumps(data)
- print(json_str)
- print(json.dumps(data, ensure_ascii=False))
- print(json.dumps(data, ensure_ascii=False, indent=4))
- print(json.dumps(data, ensure_ascii=False, indent=4, sort_keys=True))
运行结果:
- {"name": "kira", "age": 18, "hobby": ["\u5531\u6b4c", "\u5439\u725b"], "friends": [{"name": "\u5218\u5fb7\u534e"}, {"name": "\u6881\u671d\u4f1f"}]}
- {"name": "kira", "age": 18, "hobby": ["唱歌", "吹牛"], "friends": [{"name": "刘德华"}, {"name": "梁朝伟"}]}
- {
- "name": "kira",
- "age": 18,
- "hobby": [
- "唱歌",
- "吹牛"
- ],
- "friends": [
- {
- "name": "刘德华"
- },
- {
- "name": "梁朝伟"
- }
- ]
- }
- {
- "age": 18,
- "friends": [
- {
- "name": "刘德华"
- },
- {
- "name": "梁朝伟"
- }
- ],
- "hobby": [
- "唱歌",
- "吹牛"
- ],
- "name": "kira"
- }
- 如果需要将 Python 对象序列化后写入 JSON 文件,可以使用 json.dump() 方法。
- import json
- data = {
- "name": "kira",
- "age": 18,
- "hobby": ["唱歌", "吹牛"],
- "friends": [
- {"name": "刘德华"},
- {"name": "梁朝伟"}
- ]
- }
- with open('first.json', 'w', encoding='utf-8') as f:
- json.dump(data, f, ensure_ascii=False, indent=4)
通过上述方法,我们可以轻松地在 Python 中进行 JSON 数据的序列化和反序列化操作。无论是数据交换还是数据存储,JSON 都是一种简单而高效的选择。在实际工作中,我们可以根据具体需求灵活运用 JSON 的优势,提高工作效率。
3 工作中的常见场景
3.1 网络请求和响应
在web开发中,客户端和服务器之间得数据传输通常使用JSON格式。客户端可以将数据封装成 JSON 字符串,通过网络请求发送给服务器。服务器接收到 JSON 数据后,可以使用 Python 中的 JSON 模块将其反序列化为 Python 对象进行处理。处理完成后,服务器可以将结果序列化为 JSON 数据,发送给客户端作为响应。例如:
服务器端(Python):
- from flask import Flask, jsonify, request
- app = Flask(__name__)
- @app.route('/api/data', methods=['POST'])
- def receive_data():
- data = request.get_json()
- # 对接收到的数据进行处理
- processed_data = process_data(data)
- # 将处理后的数据作为 JSON 响应返回给客户端
- return jsonify(processed_data)
- def process_data(data):
- # 在这里进行数据处理的逻辑
- # ...
- return processed_data
- if __name__ == '__main__':
- app.run()
- 客户端(JavaScript):
- const data = {
- name: '测试玩家勇哥',
- age: 18,
- hobby: ['唱歌', '吹牛'],
- };
- fetch('/api/data', {
- method: 'POST',
- headers: {
- 'Content-Type': 'application/json',
- },
- body: JSON.stringify(data),
- })
- .then(response => response.json())
- .then(responseData => {
- // 处理从服务器返回的响应数据
- console.log(responseData);
- });
上述就是客户端语服务器端之间使用JSON数据传输交互的常见场景。
3.2 配置文件管理
JSON 格式数据非常适合用于存储和管理配置文件,当然数据文件的使用之前勇哥有一篇文章详细介绍过,忘记了的小伙伴可以去复习一下,传送门:,下面举个荔枝:
读取配置文件:
- import json
- def read_config_file(file_path):
- with open(file_path, 'r') as f:
- config_data = json.load(f)
- return config_data
- # 读取配置文件
- config = read_config_file('config.json')
- # 获取配置项的值
- db_host = config['database']['host']
- db_port = config['database']['port']
- 修改配置文件:
- import json
- def update_config_file(file_path, new_config):
- with open(file_path, 'w') as f:
- json.dump(new_config, f, indent=4)
- # 读取配置文件
- config = read_config_file('config.json')
- # 修改配置项的值
- config['database']['port'] = 5432
- # 更新配置文件
- update_config_file('config.json', config)
数据持久化存储也是可以写道JSON文件中的,本文就不做过多的描写了。
总结
以上就是今天为各位小伙伴准备的内容,如果你想了解更多关于Python自动化测试的知识和技巧,欢迎关注我哦!
最后,绵薄之力
感谢每一个认真阅读我文章的人,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!