洛谷P1220 关路灯(区间dp)

本文介绍了一种通过区间动态规划解决路灯关闭顺序的问题,旨在帮助老张以最小的电力消耗关闭村庄道路上的所有路灯。该算法考虑了每盏路灯的位置与功率,并通过最优路径选择实现了能源节约。

关路灯

某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。文件第一行是两个数字n(1<=n<=50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。数据保证路灯位置单调递增。

注意到一个事实,被关的灯一定是连续的区间。因为老张不会闪现。然后此题的解法就出来了,是区间动态规划。\(f[i][j][0/1]\)表示从i到j这个区间的灯被关了,0表示老张在i上,1表示老张在j上(老张如果到中间去,必定是不优的,所以可以直接把状态剪掉,这或许叫做最优性剪枝?(大雾))。然后状态转移方程就出来了。

#include <cstdio>
#include <algorithm>
using namespace std;

const int maxn=55, INF=1e9;
int n, c, powersum;
int pos[maxn], power[maxn], prepower[maxn];
int f[maxn][maxn][2];

int main(){
    scanf("%d%d", &n, &c);
    for (int i=1; i<=n; ++i){
        scanf("%d%d", &pos[i], &power[i]);
        prepower[i]=prepower[i-1]+power[i];
    }
    powersum=prepower[n];
    for (int i=1; i<=n; ++i) f[i][i][0]=f[i][i][1]=INF;
    f[c][c][0]=f[c][c][1]=0;
    for (int l=1; l<n; ++l)
        for (int i=1; i<=n-l; ++i){
            int j=i+l, p1=powersum-prepower[j]+prepower[i]; //减去p[i+1~j]
            int p2=powersum-prepower[j-1]+prepower[i-1]; //减去p[i~j-1]
            f[i][j][0]=min(f[i+1][j][0]+(pos[i+1]-pos[i])*p1,
                    f[i+1][j][1]+(pos[j]-pos[i])*p1);
            f[i][j][1]=min(f[i][j-1][1]+(pos[j]-pos[j-1])*p2,
                    f[i][j-1][0]+(pos[j]-pos[i])*p2);
        }
    printf("%d", min(f[1][n][0], f[1][n][1]));
    return 0;
}

转载于:https://www.cnblogs.com/MyNameIsPc/p/8367150.html

# P1220 路灯 ## 题目描述 某一村庄在一条路线上安装了 $n$ 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地掉这些路灯。 为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先掉自己所处位置的路灯,然后可以向左也可以向右去关灯始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先掉功率大的一边,再回过头来掉另一边的路灯,而事实并非如此,因为在的过程中适当地调头有可能会更省一些。 现在已知老张走的速度为 $1m/s$,每个路灯的位置(是一个整数,即距路线起点的距离,单位:$m$)、功率($W$),老张关灯所用的时间很短而可以忽略不计。 请你为老张编一程序来安排关灯的顺序,使从老张关灯时刻算起所有灯消耗电最少(灯掉后便不再消耗电了)。 ## 输入格式 第一行是两个数字 $n$(表示路灯的总数)和 $c$(老张所处位置的路灯号); 接下来 $n$ 行,每行两个数据,表示第 $1$ 盏到第 $n$ 盏路灯的位置和功率。数据保证路灯位置单调递增。 ## 输出格式 一个数据,即最少的功耗(单位:$J$,$1J=1W\times s$)。 ## 输入输出样例 #1 ### 输入 #1 ``` 5 3 2 10 3 20 5 20 6 30 8 10 ``` ### 输出 #1 ``` 270 ``` ## 说明/提示 ### 样例解释 此时关灯顺序为 `3 4 2 1 5`。 ### 数据范围 $1\le n\le50$,$1\le c\le n$,$1\le W_i \le 100$。 我的代码如下,我只想得部分分 #include <bits/stdc++.h> using namespace std; const int N = 50 + 5; int tot, ans; int n, c; // n : 路灯的总数, c : 老张所处位置的路灯号 bool v[N]; struct node { int p, w; }; vector<node> a(N + 1); bool check() { for (int i = 1; i <= n; i ++) { if (v[i]) continue; return false; } return true; } void dfs(int id, int sec) { if (check()) { ans = min(ans, tot); return; } for (int i = 1; i <= n; i ++) { if (v[i]) continue; tot += a[i].w * sec; } // ← v[id - 1] = true; dfs (id - 1, sec); v[id - 1] = false; // → v[id + 1] = true; dfs (id + 1, sec); v[id + 1] = false; } int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n >> c; for (int i = 1; i <= n; i ++) { int p, w; cin >> p >> w; // p : 位置, w : 功率 a[i] = {p, w}; } dfs (c, 0, 0); return 0; }
08-10
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值