编码最佳实践(2)--推荐使用concurrent包中的Atomic类

本文深入探讨了Java中非原子操作可能导致的线程安全问题,尤其是对于简单的加一操作如何引发并发冲突,并详细解释了如何通过同步、volatile关键字以及原子类等手段来确保线程安全,特别强调了原子类相较于传统同步方式的性能优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一个真实案例,曾经惹出硕大风波,故事的起因却很简单,就是需要实现一个简单的计数器,每次取值然后加1,于是就有了下面这段代码:

	  private int counter = 0;
public int getCount ( ) {
return counter++;
}


这个计数器被用于生成一个sessionId,这个sessionID用于和外部计费系统交互,这个sessionId理所当然的要求保证全局唯一而不重复。但是很遗憾,上面的代码最终被发现会产生相同的id,因此会造成一些请求莫名其妙的报错.....更痛苦的是,上面这段代码是一个来自其他部门开发的工具类,我们当时只是拿了它的jar包来调用,没有源码,更没有想这里面会有如此低级而可怕的错误。

由于重复的sessionId,造成有个别请求失败,虽然出现概率极低,经常跑一天测试都不见得能重现一次。因为是和计费相关,因此哪怕是再低的概率出错,也不得不要求解决。实际情况是,项目开发到最后阶段,都开始做发布前最后的稳定性测试了,在7*24小时的连续测试中,这个问题往往在测试开始几天后才重现,将当时负责trouble shooting的同事折腾的很惨......经过反复的查找,终于有人怀疑到这里,反编译了那个jar包,才看到上面这段出问题的代码。

这个低级的错误,源于一个java的基本知识:

[color=red][b]++操作,无论是i++还是++i,都不是原子操作! [/b] [/color]

而一个非原子操作,在多线程并发下会有线程安全的问题:这里稍微解释一下,上面的"++"操作符,从原理上讲它其实包含以下:计算加1之后的新值,然后将这个新值赋值给原变量,返回原值。类似于下面的代码

          private int counter = 0;
public int getCount ( ) {
int result = counter;
int newValue = counter + 1; // 1. 计算新值
counter = newValue; // 2. 将新值赋值给原变量
return result;
}


多线程并发时,如果两个线程同时调用getCount()方法,则他们可能得到相同的counter值。为了保证安全,一个最简单的方法就是在getCount()方法上做同步:

	  private int counter = 0;
public synchronized int getCount ( ) {
return counter++;
}


这样就可以避免因++操作符的非原子性而造成的并发危险。

我们在这个案例基础上稍微再扩展一下,如果这里的操作是原子操作,就可以不用同步而安全的并发访问吗?我们将这个代码稍作修改:

	  private int something = 0;
public int getSomething ( ) {
return something;
}
public void setSomething (int something) {
this.something = something;
}


假设有多线程同时并发访问getSomething()和setSomething()方法,那么当一个线程通过调用setSomething()方法设置一个新的值时,其他调用getSomething()的方法是不是立即可以读到这个新值呢?这里的"this.something = something;" 是一个对int 类型的赋值,按照java 语言规范,对int的赋值是原子操作,这里不存在上面案例中的非原子操作的隐患。

但是这里还是有一个重要问题,称为"内存可见性"。这里涉及到java内存模型的一系列知识,限于篇幅,不详尽讲述,不清楚这些知识点的可以自己翻翻资料,最简单的办法就是google一下这两个关键词"java 内存模型", "java 内存可见性"。或者,可以参考这个帖子"java线程安全总结", http://www.iteye.com/topic/806990。

解决这里的"内存可见性"问题的方式有两个,一个是继续使用 synchronized 关键字,代码如下

	  private int something = 0;
public synchronized int getSomething ( ) {
return something;
}
public synchronized void setSomething (int something) {
this.something = something;
}


另一个是使用volatile 关键字,

	  private volatile int something = 0;
public int getSomething ( ) {
return something;
}
public void setSomething (int something) {
this.something = something;
}


使用volatile 关键字的方案,在性能上要好很多,因为volatile是一个轻量级的同步,只能保证多线程的内存可见性,不能保证多线程的执行有序性。因此开销远比synchronized要小。

让我们再回到开始的案例,因为我们采用直接在 getCount() 方法前加synchronized 的修改方式,因此不仅仅避免了非原子性操作带来的多线程的执行有序性问题,也"顺带"解决了内存可见性问题。

OK,现在可以继续了,前面讲到可以通过在 getCount() 方法前加synchronized 的方式来解决问题,但是其实还有更方便的方式,可以使用jdk 5.0之后引入的concurrent包中提供的原子类,java.util.concurrent.atomic.Atomic***,如AtomicInteger,AtomicLong等。

        private AtomicInteger  counter = new AtomicInteger(0);
public int getCount ( ) {
return counter.incrementAndGet();
}


Atomic类不仅仅提供了对数据操作的线程安全保证,而且提供了一系列的语义清晰的方法如incrementAndGet(),getAndIncrement,addAndGet(),getAndAdd(),使用方便。更重要的是,Atomic类不是一个简单的同步封装,其内部实现不是简单的使用synchronized,而是一个更为高效的方式CAS (compare and swap) + volatile,从而避免了synchronized的高开销,执行效率大为提升。限于篇幅,关于“CAS”原理就不在这里讲诉。

因此,出于性能考虑,强烈建议尽量使用Atomic类,而不要去写基于synchronized关键字的代码实现。

最后总结一下,在这个帖子中我们讲诉了一下几个问题:

1. ++操作不是原子操作
2. 非原子操作有线程安全问题
3. 并发下的内存可见性
4. Atomic类通过CAS + volatile可以比synchronized做的更高效,推荐使用
内容概要:本文介绍了基于SMA-BP黏菌优化算法优化反向传播神经网络(BP)进行多变量回归预测的项目实例。项目旨在通过SMA优化BP神经网络的权重和阈值,解决BP神经网络易陷入局部最优、收敛速度慢及参数调优困难等问题。SMA算法模拟黏菌寻找食物的行为,具备优秀的全局搜索能力,能有效提高模型的预测准确性和训练效率。项目涵盖了数据预处理、模型设计、算法实现、性能验证等环节,适用于多变量非线性数据的建模和预测。; 适合人群:具备一定机器学习基础,特别是对神经网络和优化算法有一定了解的研发人员、数据科学家和研究人员。; 使用场景及目标:① 提升多变量回归模型的预测准确性,特别是在工业过程控制、金融风险管理等领域;② 加速神经网络训练过程,减少迭代次数和训练时间;③ 提高模型的稳定性和泛化能力,确保模型在不同数据集上均能保持良好表现;④ 推动智能优化算法与深度学习的融合创新,促进多领域复杂数据分析能力的提升。; 其他说明:项目采用Python实现含详细的代码示例和注释,便于理解和二次开发。模型架构由数据预处理模块、基于SMA优化的BP神经网络训练模块以及模型预测与评估模块组成,各模块接口清晰,便于扩展和维护。此外,项目还提供了多种评价指标和可视化分析方法,确保实验结果科学可信。
该文档为 C 语言入门教程,围绕函数、数组、指针、字符串、结构体等核心概念展开,具体内容如下: 函数入门:函数是模块化编程的基础,可抽象独立功能并重复使用。分为无参函数和有参函数,及库函数(系统提供,需含头文件)与自定义函数(用户编写)。详解函数定义四要素(返回型、函数名、参数列表、函数体)、形参与实参的单向值传递、返回值规则,以及函数声明与定义的区别,还涉及嵌套调用和递归调用。 数组:用于存储同一型的多个元素,内存连续。括一维数组(声明、初始化、下标访问,案例有逆序输出、排序)、二维数组(行列结构,案例有矩阵转置、杨辉三角)及高维数组,强调避免下标越界,且数组不可整体赋值、比较或运算。 指针:指针即变量地址,指针变量用于存储地址。详解指针声明、初始化(避免未初始化)、取地址(&)与间接访问(*)运算符,及指针运算(赋值、算术、比较、相减)。介绍指针与数组的关联、函数指针、返回指针的函数,以及动态内存分配(malloc、free 等函数)及内存泄漏问题。 字符串及操作:以 '\0' 结尾的字符数组,可整体输入输出。讲解字符数组与字符指针的区别,字符串处理函数(strcpy、strcmp、strcat 等),及字符串初始化和赋值规则。 结构体、共用体、枚举和 typedef:结构体组合不同型数据,有定义、初始化、引用及数组、指针用法;共用体成员共享内存,同一时刻仅一个成员有效;枚举型列举可能值;typedef 为型取别名,简化编程。 初学者答疑:解答指针与地址区别、内存泄漏、字符串赋值等常见问题,并附综合习题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值