[HAOI2018]苹果树

题目描述

小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点.

第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边.

小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间 的距离定义为从一个点走到另一个点的路径经过的边数.

现在他非常好奇, 如果 NNN 天之后小 G 来他家摘苹果, 这个不便度的期望 EEE 是多少. 但是小 C 讨厌分数, 所以他只想知道 E×N!E \times N !E×N! 对 PPP 取模的结果, 可以证明这是一个整数.

输入输出格式

输入格式:

从标准输入中读入数据. 一行两个整数 NNN (N<=2000), PPP .

输出格式:

输出到标准输出中. 输出一个整数表示答案.

输入输出样例

输入样例#1: 复制
3 610745795
输出样例#1: 复制
24
输入样例#2: 复制
305 1000000007
输出样例#2: 复制
865018107

说明

Explanation

以上是所有 N=3N = 3N=3 时可能的苹果树形态, 其中编号表示这个结点是第几天生 长出来的, 显然每种情况两两结点的距离均为 444 .

传送门

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 int fac[2001],C[2001][2001],F[2001][2001],n,Mod,ans;
 8 int main()
 9 {int i,j;
10   cin>>n>>Mod;
11   fac[0]=1;
12   for (i=1;i<=n;i++)
13     fac[i]=1ll*fac[i-1]*i%Mod;
14   for (i=0;i<=n;i++)
15     {
16       C[i][0]=1;
17       for (j=1;j<=i;j++)
18     C[i][j]=(C[i-1][j-1]+C[i-1][j])%Mod;
19     }
20   for (i=1;i<=n;i++)
21     {
22       F[i][0]=1;
23       for (j=1;j<=n;j++)
24     F[i][j]=1ll*F[i][j-1]*(i+j-2)%Mod;
25     }
26   for (i=2;i<=n;i++)
27     {
28       for (j=n-i+1;j>=1;j--)
29     {
30       ans=(ans+(1ll*j*(n-j)%Mod*C[n-i][j-1]%Mod*fac[j]%Mod*F[i][n-j-i+1]%Mod*fac[i]%Mod))%Mod;
31     }
32     }
33   cout<<ans;
34 }

 

转载于:https://www.cnblogs.com/Y-E-T-I/p/8969777.html

### 洛谷平台上的动态规划刷题推荐顺序 对于初学者来说,掌握动态规划的基础概念和常见模型非常重要。以下是基于洛谷平台的动态规划学习路径以及推荐的刷题顺序: #### 一、基础知识积累 在开始刷题之前,建议先通过课程或书籍理解动态规划的核心思想,包括状态定义、转移方程设计、边界条件处理等内容[^1]。 #### 二、入门级题目练习 从简单的线性DP入手,熟悉基本的状态表示方法和递推关系。 - **P1004 [NOIP2000 提高组] 装箱问题** - 这是一道经典的背包问题变种,适合用来初步接触动态规划中的状态压缩技巧[^4]。 - **P1048 [NOIP2005 提高组] 数字游戏** - 练习如何设定合理的状态变量并构建相应的转移矩阵[^3]。 #### 三、中级难度提升 当具备一定基础之后,尝试解决稍复杂的区间型或者树形结构下的dp问题。 - **P1976 [USACO06DEC] The Cow Prom G** - 此类涉及环状序列的操作,需考虑特殊情况下循环的影响[^2]。 - **P2015 二叉苹果树** - 属于典型的树上dp范畴,重点在于子节点贡献给父节点的方式。 #### 四、高级综合应用 最后挑战那些融合多种算法思想的大规模复杂场景下的优化版dp实现。 - **P3175 [HAOI2015] 树上染色** - 结合图论知识考察选手灵活运用数据结构的能力。 - **P4774 [NOI2018] 归程** - 多重维度约束条件下最优策略的选择过程展示得淋漓尽致。 ```python def dp_example(n, m): """ A simple example of dynamic programming. :param n: Number of items (e.g., problems to solve). :param m: Total available time or resources. :return: Maximum value achievable within the limit. """ # Initialize DP table with zeros dp = [[0]*(m+1) for _ in range(n+1)] # Example input data simulation; replace this part according actual problem definition weights = [random.randint(1,10) for _ in range(n)] values = [random.randint(1,50) for _ in range(n)] for i in range(1,n+1): for j in range(m,-1,-1): if j >=weights[i-1]: dp[i][j]=max(dp[i-1][j],values[i-1]+dp[i-1][j-weights[i-1]]) else: dp[i][j]=dp[i-1][j] return dp[n][m] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值