LEETCODE: Binary Tree Maximum Path Sum

本文介绍了一种解决二叉树最大路径和问题的方法。该问题要求找出从任意节点开始到任意节点结束的最大路径和。文章提供了一个递归算法实现,并通过内部函数维护全局变量来跟踪最大路径和。

Given a binary tree, find the maximum path sum.

The path may start and end at any node in the tree.

For example:
Given the below binary tree,

       1
      / \
     2   3

Return 6.

递归,不过同时要记住可能的最大值。因为最大值不一定会经过根节点!

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int maxpath;
    int maxPathSumInternal(TreeNode *root) {
        if(root == NULL) return 0;
        int leftmax = max(maxPathSumInternal(root->left), 0);
        int rightmax = max(maxPathSumInternal(root->right), 0);
        int totalmax = leftmax + rightmax + root->val;
        if(totalmax > maxpath)
            maxpath = totalmax;
        return max(leftmax + root->val, rightmax + root->val);
    }
    int maxPathSum(TreeNode *root) {
        maxpath = 0xa0000000;
        maxPathSumInternal(root);
        return maxpath;
    }
};




### 三级标题:优化路径和查找代码以提高可读性与可维护性 为了提高代码的可读性和可维护性,可以对原有的路径和查找函数进行重构。主要优化点包括: 1. **函数职责分离**:将路径和计算与递归遍历逻辑分离。 2. **使用清晰的变量命名**:例如将 `currentSum` 改为 `currentPathSum`,增强语义表达。 3. **增加注释说明**:对关键步骤进行详细解释,提高代码可读性。 4. **避免全局变量**:使用指针参数传递计数器,避免全局状态。 以下是优化后的代码示例: ```c #include <stdio.h> #include <stdlib.h> typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; } TreeNode; // 递归遍历路径和函数 void traversePaths(TreeNode* node, long currentPathSum, int targetSum, int* count) { if (node == NULL) { return; } currentPathSum += node->val; if (currentPathSum == targetSum) { (*count)++; } traversePaths(node->left, currentPathSum, targetSum, count); traversePaths(node->right, currentPathSum, targetSum, count); } // 主函数,计算路径和等于目标值的路径数目 int pathSum(TreeNode* root, int targetSum) { int count = 0; traversePaths(root, 0, targetSum, &count); return count; } ``` 该实现通过将路径和计算与递归遍历逻辑分离,提高了代码的模块化程度[^1]。此外,使用清晰的变量命名和注释,使得代码更易于理解和维护。 ### 三级标题:测试代码与内存释放 为了验证函数的正确性,可以编写测试代码,并在使用后释放内存以避免内存泄漏: ```c void testPathSum() { // 构建测试二叉树 TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode)); root->val = 10; root->left = (TreeNode*)malloc(sizeof(TreeNode)); root->left->val = 5; root->left->left = (TreeNode*)malloc(sizeof(TreeNode)); root->left->left->val = 3; root->left->left->left = NULL; root->left->left->right = NULL; root->left->right = (TreeNode*)malloc(sizeof(TreeNode)); root->left->right->val = 2; root->left->right->left = NULL; root->left->right->right = (TreeNode*)malloc(sizeof(TreeNode)); root->left->right->right->val = 1; root->left->right->right->left = NULL; root->left->right->right->right = NULL; root->right = (TreeNode*)malloc(sizeof(TreeNode)); root->right->val = -3; root->right->left = NULL; root->right->right = (TreeNode*)malloc(sizeof(TreeNode)); root->right->right->val = 7; root->right->right->left = NULL; root->right->right->right = NULL; int targetSum = 8; int result = pathSum(root, targetSum); printf("路径和等于 %d 的路径数目为: %d\n", targetSum, result); } // 释放二叉树节点内存 void freeTree(TreeNode* root) { if (root == NULL) { return; } freeTree(root->left); freeTree(root->right); free(root); } int main() { testPathSum(); return 0; } ``` 此测试代码通过构建一个具体的二叉树结构,并调用 `pathSum` 函数来验证其功能。最后,使用 `freeTree` 函数释放所有分配的内存资源,防止内存泄漏。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值