Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
class Solution {
public:
int trap(int A[], int n) {
int maxi = 0;
for(int ii = 1; ii < n; ii ++) {
if(A[maxi] < A[ii]) {
maxi = ii;
}
}
int result = 0;
// Left to max
int maxval = A[0];
for(int ii = 1; ii < maxi; ii ++) {
if(A[ii] > maxval) {
maxval = A[ii];
}
else {
result += maxval - A[ii];
}
}
// Right to max
maxval = A[n - 1];
for(int ii = n -2; ii > maxi; ii --) {
if(A[ii] > maxval) {
maxval = A[ii];
}
else {
result += maxval - A[ii];
}
}
return result;
}
};
本文介绍了一个算法,用于计算给定高度数组表示的地形中,在雨后能够储存的雨水量。通过遍历数组并确定最高点,算法能够有效计算雨水储存量。
631

被折叠的 条评论
为什么被折叠?



