TOJ-1317 Median Weight Bead

在一系列重量不同的珠子中,通过比较确定哪些珠子不可能是中位数重量,使用算法排除这些珠子,旨在找到可能成为中位数的珠子。

There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, ..., N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads:

A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.

For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.

  1. Bead 2 is heavier than Bead 1.
  2. Bead 4 is heavier than Bead 3.
  3. Bead 5 is heavier than Bead 1.
  4. Bead 4 is heavier than Bead 2.

From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.

Write a program to count the number of beads which cannot have the median weight.

Input

The first line of the input file contains a single integer t (1 ≤ t ≤ 11), the number of test cases, followed by the input data for each test case. The input for each test case will be as follows:
The first line of input data contains an integer N (1 ≤ N ≤ 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead.

Output

There should be one line per test case. Print the number of beads which can never have the medium weight.

Sample Input

1
5 4
2 1
4 3
5 1
4 2

Sample Output

2



Source: Tehran 2004 Iran Nationwide

 

#include <iostream>
#include <memory.h>
using namespace std;
int a[110][110];
int main(){
    int t,m,n,i,j,k,med,x,y,ans;
    cin>>t;
    while(t--){
        cin>>n>>m;
        memset(a,0,sizeof(a));
        med=(n+1)/2;
        ans=0;
        while(m--){
            cin>>x>>y;
            a[x][y]=1;
            a[y][x]=-1;
        }
        for(k=1;k<=n;k++){
            for(i=1;i<=n;i++){
                for(j=1;j<=n;j++){
                    if(a[i][k]>0 && a[k][j]>0)
                        a[i][j]=1;
                    if(a[i][k]<0 && a[k][j]<0)
                        a[i][j]=-1;
                }
            }
        }
        for(i=1;i<=n;i++){
            int s=0,b=0;
            for(j=1;j<=n;j++){
                if(a[i][j]>0)    b++;
                else if(a[i][j]<0)    s++;
            }
            if(b>=med)    ans++;
            else if(s>=med)    ans++;
        }
        cout<<ans<<endl;
    }
    return 0;
} 

 

转载于:https://www.cnblogs.com/shenchuguimo/p/6349415.html

跟网型逆变器小干扰稳定性分析与控制策略优化研究(Simulink仿真实现)内容概要:本文围绕跟网型逆变器的小干扰稳定性展开分析,重点研究其在电力系统中的动态响应特性及控制策略优化问题。通过构建基于Simulink的仿真模型,对逆变器在不同工况下的小信号稳定性进行建模与分析,识别系统可能存在的振荡风险,并提出相应的控制优化方法以提升系统稳定性和动态性能。研究内容涵盖数学建模、稳定性判据分析、控制器设计与参数优化,并结合仿真验证所提策略的有效性,为新能源并网系统的稳定运行提供理论支持和技术参考。; 适合人群:具备电力电子、自动控制或电力系统相关背景,熟悉Matlab/Simulink仿真工具,从事新能源并网、微电网或电力系统稳定性研究的研究生、科研人员及工程技术人员。; 使用场景及目标:① 分析跟网型逆变器在弱电网条件下的小干扰稳定性问题;② 设计并优化逆变器外环与内环控制器以提升系统阻尼特性;③ 利用Simulink搭建仿真模型验证理论分析与控制策略的有效性;④ 支持科研论文撰写、课题研究或工程项目中的稳定性评估与改进。; 阅读建议:建议读者结合文中提供的Simulink仿真模型,深入理解状态空间建模、特征值分析及控制器设计过程,重点关注控制参数变化对系统极点分布的影响,并通过动手仿真加深对小干扰稳定性机理的认识。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值