aptana django syncdb locale.getdefaultlocale()错误解决方案

在将项目从Windows迁移到Mac后,执行Django的syncdb命令出现错误,提示'locale.getdefaultlocale()[1]'为None。解决方法是在 Aptana Studio 的 Preferences > Pydev > Interpreter - Python > Enviroment 中添加环境变量 LC_ALL=en_US.UTF-8,从而修复编码问题。

问题:从windows转移到mac下,之后,执行syncdb报错:

Creating tables ...
Creating table auth_permission
Creating table auth_group_permissions
Creating table auth_group
Creating table auth_user_user_permissions
Creating table auth_user_groups
Creating table auth_user
Creating table django_content_type
Creating table django_session
Creating table django_site
Creating table django_admin_log


You just installed Django's auth system, which means you don't have any superusers defined.
Would you like to create one now? (yes/no): yes
Traceback (most recent call last):
  File "manage.py", line 10, in <module>
    execute_from_command_line(sys.argv)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/__init__.py", line 443, in execute_from_command_line
    utility.execute()
  File "/opt/local/lib/python2.6/site-packages/django/core/management/__init__.py", line 382, in execute
    self.fetch_command(subcommand).run_from_argv(self.argv)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/base.py", line 196, in run_from_argv
    self.execute(*args, **options.__dict__)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/base.py", line 232, in execute
    output = self.handle(*args, **options)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/base.py", line 371, in handle
    return self.handle_noargs(**options)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/commands/syncdb.py", line 110, in handle_noargs
    emit_post_sync_signal(created_models, verbosity, interactive, db)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/sql.py", line 189, in emit_post_sync_signal
    interactive=interactive, db=db)
  File "/opt/local/lib/python2.6/site-packages/django/dispatch/dispatcher.py", line 172, in send
    response = receiver(signal=self, sender=sender, **named)
  File "/opt/local/lib/python2.6/site-packages/django/contrib/auth/management/__init__.py", line 73, in create_superuser
    call_command("createsuperuser", interactive=True, database=db)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/__init__.py", line 150, in call_command
    return klass.execute(*args, **defaults)
  File "/opt/local/lib/python2.6/site-packages/django/core/management/base.py", line 232, in execute
    output = self.handle(*args, **options)
  File "/opt/local/lib/python2.6/site-packages/django/contrib/auth/management/commands/createsuperuser.py", line 70, in handle
    default_username = get_default_username()
  File "/opt/local/lib/python2.6/site-packages/django/contrib/auth/management/__init__.py", line 105, in get_default_username
    default_username = get_system_username()
  File "/opt/local/lib/python2.6/site-packages/django/contrib/auth/management/__init__.py", line 85, in get_system_username
    return getpass.getuser().decode(locale.getdefaultlocale()[1])
TypeError: decode() argument 1 must be string, not None


解决:

aptana>>preference>>pydev>>interpreter-python>>enviroment 添加 LC=en_US.UTF-8

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值