【力扣】62.不同路径

本文探讨了一个经典算法问题:计算机器人从网格左上角到右下角的不同路径数量。通过动态规划方法,详细解析了如何利用状态转移方程解决这一问题,并提供了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述(中等)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

例如,上图是一个7 x 3 的网格。有多少可能的路径?

说明:m 和 的值均不超过 100。

题目链接

https://leetcode-cn.com/problems/unique-paths/

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

算法分析

设dp[i][j]表示到达点(i, j)时有多少条路径,那么状态转移矩阵可以写为:

dp[i][j]=\begin{cases} 1 & \text{ if } i=0||j=0\\ dp[i-1][j]+dp[i][j-1] & \text{ if } i!=0\&\&j!=0 \end{cases}

提交代码:

class Solution {
public:
    int uniquePaths(int m, int n) {
        const int M = m;
        const int N = n;
        
        int dp[M][N];
        memset(dp, 0, sizeof(dp));
        
        for (int i = 0; i < m; ++i) dp[i][0] = 1;
        for (int i = 0; i < n; ++i) dp[0][i] = 1;
        
        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        
        return dp[m-1][n-1];
    }
};

 

### 解决方案概述 对于LeetCode 1584题——连接所有点的最小费用,目标是在给定平面上的一组点之间建立边,使得这些点全部连通,并且总成本最低。此问题可以通过构建最小生成树(Minimum Spanning Tree, MST)[^2]来解决。 #### Prim's Algorithm 实现方法 Prim’s算法是一种用于求解无向图中最小生成树的有效贪心算法。该算法通过逐步扩展已有的部分生成树直到覆盖所有的顶点为止,在每一步都选择当前未加入的部分中最短的边。 ```python import heapq def minCostConnectPoints(points): n = len(points) # 计算曼哈顿距离作为权重函数 def manhattan(p1, p2): return abs(p1[0]-p2[0]) + abs(p1[1]-p2[1]) visited = set() heap = [(0, 0)] # (cost, point_index) result = 0 while len(visited) < n: cost, i = heapq.heappop(heap) if i in visited: continue visited.add(i) result += cost for j in range(n): if j not in visited and j != i: heapq.heappush(heap, (manhattan(points[i], points[j]), j)) return result ``` 上述代码实现了基于优先队列优化版本的Prim’s算法。首先定义了一个辅助函数`manhattan()`用来计算两点之间的曼哈顿距离;接着初始化一个小根堆存储候选节点及其对应的代价;最后进入循环直至访问过所有节点并累加路径长度得到最终的结果。 #### Kruskal's Algorithm 实现方式 Kruskal’s算法也是一种常用的MST算法,它按照从小到大的顺序处理各条边,只当一条边不会形成环路时才将其添加至正在形成的森林里。为了高效实现这一点,可以采用Union-Find数据结构来进行动态集合操作。 ```python class UnionFind(object): def __init__(self, size): self.parent = list(range(size)) def find(self, x): if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, u, v): rootU = self.find(u) rootV = self.find(v) if rootU == rootV: return False else: self.parent[rootU] = rootV return True def minCostConnectPoints_kruskal(points): edges = [] n = len(points) for i in range(n): for j in range(i+1, n): distance = abs(points[i][0] - points[j][0]) + \ abs(points[i][1] - points[j][1]) edges.append((distance, i, j)) uf = UnionFind(n) edges.sort() res = 0 count = 0 for dist, u, v in edges: if uf.union(u, v): res += dist count += 1 if count >= n-1: break return res ``` 这段Python程序展示了如何利用Kruskal的方法解决问题。创建了名为`edges`列表保存所有可能存在的边以及它们各自的权值(即两个端点间的曼哈特尼距离),之后对其进行升序排列。随后遍历排序后的边集尝试将符合条件的新边纳入结果集中去,同时维护一个计数器确保恰好选择了\(n−1\)条独立边构成一棵完整的树形结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值